Home
Class 11
MATHS
If x satisfies the equation x^(2)(int(0)...

If `x` satisfies the equation `x^(2)(int_(0)^( pi/2)(2sin t+3cos t)dt)-x(int_(-3)^(3)(t^(2)sin2t)/(t^(2)+1))-2=0` ,then the value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2 pi)[sin t]dt

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If f(x)=sin x+int_(0)^((pi)/(2))sin x cos tf(t)dt, then int_(0)^((pi)/(2))f(x)dx=

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is