Home
Class 12
MATHS
Let f(x) be a continuous & differentiabl...

Let `f(x)` be a continuous `&` differentiable function on `R` satisfying `f(-x)=f(x)&f(3+x)=f(3-x)AA x in R`. If `f'(1)=-5` then `f'(7)` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying f'(x)=f' (-x) AA x in R. Then

If f is a differentiable function satisfying 2f(x)=f(xy)+f((x)/(y)),AA x,y in R^(+), f(1)=0 and f'(1)=(1)/(ln6), then f(7776) =

Let f(x) be a differentiable function satisfying f(y)f((x)/(y))=f(x)AA,x,y in R,y!=0 and f(1)!=0,f'(1)=3 then

Let f:R rarr R be a differential function satisfy f(x)=f(x-y)f(y)AA x,y in R and f'(0)=a,f'(2)=b then f'(-2)=

Let f:R rarr R be a differentiable function satisfying 2f((x+y)/(2))-f(y)=f(x) AA x , y in R ,if f(0)=5 and f'(0)=-1 , then f(1)+f(2)+f(3) equals

Let f be a differentiable function satisfying f(x+2y)=2yf(x)+xf(y)-3xy+1 AA x , y in R such that f'(0)=1 ,then value of f(8) is equal