Home
Class 12
MATHS
If log15=a and log75=b , then (log)(75)4...

If `log15=a` and `log75=b ,` then `(log)_(75)45` is: `(3b-a)/a` (b) `(b-3a)/a` `(3a-b)/b` (d) `(a-3b)/b`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log 15=a and log75=b , then log_(75)45 is:

If log 15=a and log75=b , then log_(75)45 is:

If log15=aa n dlog75=b ,t h e n(log)_(75)45 is: (3b-a)/a b. (b-3a)/a c. (3a-b)/b d. (a-3b)/b

If log 15=a and log75=b, thenlog _(75)45 is: (3b-a)/(a) b.(b-3a)/(a) c.(3a-b)/(b) d.(a-3b)/(b)

If log_(a)3=2 and log_(b)8=3, then log_(a)b is

3.If a=log_(45) and b=log_(56), then log_(23)=

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

If log(2a-3b)=log a-log b, then a=

If (log)_(10)5=aa n d(log)_(10)3=b ,t h e n (A) (log)_(30)8=(3(1-a))/(b+1) (B) (log)_(40)15=(a+b)/(3-2a) (C) (log)_(243)32=(1-a)/b (d) none of these