Home
Class 12
MATHS
If A+B+C=pi, prove that : cot( A/2)+ cot...

If `A+B+C=pi`, prove that : `cot( A/2)+ cot(B/2) + cot( C/2) = cot( A/2) cot(B/2) cot(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle prove that cot(A/2)+cot (B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

If A + B + C =pi/2 , prove that : cot A + cot B + cot C = cot A cot B cot C .

In triangleABC,A+B+C=pi ,show that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

if A+B+C=pi prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))xx cot((B)/(2))xx cot((C)/(2))

If A+B+C=pi Prove that cot A/2+cot tB/2+cot C/2=cot A/2cot B/2cot C/2

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1

If A+B+C=pi , prove that: cot^2 A+cot^2 B + cot^2 C ge 1

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)