Home
Class 12
MATHS
If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|...

If `f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x)` (where [.] denotes the greatest integer function), then the respective fundamental periods of `f(x),g(x),a n dvarphi(x)` are `pi,pi,pi` (b) `pi,2pi,pi` `pi,pi,pi/2` (d) `pi,pi/2,pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

If f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f(sqrt((pi)/(3))) is (where [x] denotes the greatest integer function )

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x , where [x] stands for the greatest integer function, then