Home
Class 12
MATHS
The exhaustive domain of the following f...

The exhaustive domain of the following function is `f(x)=sqrt(x^(12)-x^9+x^4-x+1)` (a)`[0,1]` (b) `[1,oo]` `[-oo,1]` (d) `R`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definiton of the function f(x)=(1)/(sqrt(x^(12)-x^(9)+x^(4)-x+1)) , is

The exhaustive domain of f(x)=sqrt(x^(12)-x^(9)+x^(4)-x+1) is

The domain of the function f(x)=sqrt(x-1)+sqrt(6-x) is (a) [1,oo)(c)[1,6](b)(-oo,6)(d) None of these

The domain of the following function is f(x)=(log)_(2)(-(log)_((1)/(2))(1+(1)/((x^((1)/(4))))-1)(0,1)(b)(0,1)(1,oo)(d)(1,oo)

The domain of definition of the function f(x)=sqrt(x-1)+sqrt(3-x) is [1,oo) b. (-oo,3) c. (1,3) d. [1,3]

The domain of the function f:R rarr R defined by f(x)=sqrt(x^(2)-3x+2) is (-oo,a]uu[b,oo) then b-a

The domain of the function f :R rarr R defined by f(x)=sqrt(x^(2)-3x+2) is (-oo,a]uu[b,oo) then a+ b=

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=sqrt(x^(2)-[x]^(2)), where [x] is the greatest integer less than or equal to x, is R(b)[0,+oo](-oo,0)(d) none of these