Home
Class 7
MATHS
" 7."sec(tan^(-1)x)...

" 7."sec(tan^(-1)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Find the domain of (i) sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

For any real number x ge 1 , the expression sec^(2)x ( tan^(-1)x) - tan^(2)x ( sec^(-1) x) is equal to

If sec^(2)x+tan^(2)x=7th en x=

If sec A+tan A=x then sec A=(x^(2)-1)/(x)

Prove that :sec^(6)x-tan^(6)x-3sec^(2)x" ."tan^(2)x=1

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K