Home
Class 12
MATHS
If the tangentat P of the curve y^2 = x^...

If the tangentat P of the curve `y^2 = x^3` intersect the curve again at Q and the straigta line `OP, OQ` have inclinations `alpha and beta` where O is origin, then `tanalpha/tan beta` has the value equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangent at P(2,8) on the curve y=x^(3) meets the curve again at Q. Find coordinates of Q.

Tangent at P(2,8) on the curve y=x^(3) meets the curve again at Q. Find coordinates of Q.

Tangent at P(2,8) on the curve y=x^(3) meets the curve again at Q.Find coordinates of Q.

If the normals to the parabola y^(2)=4ax at P meets the curve again at Q and if PQ and the normal at Q make angle alpha and beta respectively,with the x-axis,then tan alpha(tan alpha+tan beta) has the value equal to 0 (b) -2( c) -(1)/(2)(d)-1

If the normals to the parabola y^2=4a x at P meets the curve again at Q and if P Q and the normal at Q make angle alpha and beta , respectively, with the x-axis, then t a nalpha(tanalpha+tanbeta) has the value equal to 0 (b) -2 (c) -1/2 (d) -1

If the normals to the parabola y^2=4a x at P meets the curve again at Q and if P Q and the normal at Q make angle alpha and beta , respectively, with the x-axis, then t a nalpha(tanalpha+tanbeta) has the value equal to 0 (b) -2 (c) -1/2 (d) -1

If the normals to the parabola y^2=4a x at P meets the curve again at Q and if P Q and the normal at Q make angle alpha and beta , respectively, with the x-axis, then t a nalpha(tanalpha+tanbeta) has the value equal to 0 (b) -2 (c) -1/2 (d) -1

If the normals to the parabola y^2=4a x at P meets the curve again at Q and if P Q and the normal at Q make angle alpha and beta , respectively, with the x-axis, then t a nalpha(tanalpha+tanbeta) has the value equal to

If the normals to the parabola y^2=4a x at P meets the curve again at Q and if P Q and the normal at Q make angle alpha and beta , respectively, with the x-axis, then t a nalpha(tanalpha+tanbeta) has the value equal to