Home
Class 12
MATHS
Find the domain of f(x)=sqrt(([x]-1))+sq...

Find the domain of `f(x)=sqrt(([x]-1))+sqrt((4-[x]))` (where [ ] represents the greatest integer function).

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

The domain of f(x)=e^(sin(x-[x]))-[x]cos(pi/([x-1])) ,where [*] represents greatest integer function,is

f(x)=cos^(-1)sqrt(log_([x])((|x|)/(x))) where [.1 denotes the greatest integer function

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

The domain of the function f(x)=([x+3]-x)/([x-5](x-[x])) is (where [ ] is the greatest integer function