Home
Class 12
MATHS
Let f(x)=int(x^2)^(x^3) for x > 1 and ...

Let `f(x)=int_(x^2)^(x^3)` for `x > 1 and g(x)=int_1^x (2t^2-Int)f(t)dt (x lt 1)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x)= int _(x^(2))^(x ^(3))(dt)/(ln t) for x gt 1 and g (x) = int _(1) ^(x) (2t ^(2) -lnt ) f(t) dt(x gt 1), then:

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x)=(1-x)^2sin^2x+x^2 for all xinR and let g(x)=int_1^x((2(t-1))/(t+1)-Int) f(t)dt for all xin(1,oo) Which of the following is true ?

Let f(x)=(1-x)^(2)sin^(2)x+x^(2) for all x in IR, and let g(x)=int_(1)^(x)((2(t-1))/(t-1)-ln t)f(t) dt for all x,in(1,oo). Which of the following is true?

Let f(x)=(1-x)^(2) sin^(2) x+x^(2) for all x in RR , and let g(x)=int_(1)^(x) ((2(t-1))/(t+1)-log t)f(t) dt for all x in (1, oo) . Which of the following is true?

Let f(x)=int_(0)^(1)|x-t|dt, then

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

f(x) : [0, 5] → R, F(x) = int_(0)^(x) x^2 g(x) , f(1) = 3 g(x) = int_(1)^(x) f(t) dt then correct choice is

If f(x) = int_1^x (1)/(2 + t^4) dt ,then