Home
Class 12
MATHS
Solve x^2-4-[x]=0 (where [] denotes the ...

Solve `x^2-4-[x]=0` (where `[]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Total number of solutions of the equation x^(2)-4-[x]=0 are (where (.) denotes the greatest integer function)

Number of solutions for x^(2)-2-2[x]=0 (where [.] denotes greatest integer function) is

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve in R: x^2+ 2[x] = 3x where [.] denotes greatest integer function.

The period of 6x-[6x] is (where [ ] denotes the greatest integer function)

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :