Home
Class 11
MATHS
" If "alpha" is a real root of "2x^(3)-3...

" If "alpha" is a real root of "2x^(3)-3x^(2)+6x+6=0" ,then find "[alpha]" where "[]" denotes the greatest integer function "

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of 6x-[6x] is (where [ ] denotes the greatest integer function)

If 1,1, alpha are the roots of x ^(3) -6x ^(2) + 9x- 4 =0 then find 'alpha '.

If -1,2 and alpha are the roots of 2x^3 +x^2-7x-6=0 , then find alpha

If -1,2 and alpha are the roots of 2x^3 +x^2-7x-6=0 , then find alpha

If [x]^(2)-5[x]+6=0 , where [.] denotes the greatest integer function, then :

If -1, 2 , alpha are roots of 2x^(3) + x^(2) - 7x - 6 = 0 then alpha =

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Find the solution of [x]^2-5[x]+6=0 ,where [] denotes the greatest integer function.

If [x]^2-5[x]+6=0 (where [.] denotes the greatest integer function), then x belongs to

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :