Home
Class 14
MATHS
11quad log(log i)...

11quad log(log i)

Promotional Banner

Similar Questions

Explore conceptually related problems

The real part of log log i is

(i) Show that (log 9)/2 + 2 log 6 +(log 81)/4 - log 12 = 3 log 3 .

Solve for x : (i) (log 81)/(log 27) = x (ii) (log 128)/(log 32) = x (iii) (log 64)/(log 8) = log x (iv) (log 225)/(log 15) = log x

I=int e^(x log x)(1+log x)

"F i n d"int[log(logx)+1/((logx)^2)]dx Find log (log x)+ |dx 2 (log x)

(sin (log i^(i)))^3 + (cos (log i^(i)))^3 =

(log11)/(log13)-(log_(3)11)/(log_(sqrt(5))13)

Solve (log11)/(log13)-(log_(3)11)/(log_(sqrt(5))13)

If a^(log_(5)11)=25 and b^(log_(11)25)=sqrt(11), then last digit of N=a^((log_(5)11)^(2))+b^((log_(11)25)) is equal to

if a,b,c are positive real numbers such that a^(log_(3)7)=27;b^(log711)=49 and c^(log_(11)25)=sqrt(11) then the value of {a^(log_(3)7)sim2+b^(log_(7)11)^^2+c^(log_(11)25)^^2} is