Home
Class 11
MATHS
Let p1,p2,...,pn and x be distinct real...

Let `p_1,p_2,...,p_n and x ` be distinct real number such that `(sum_(r=1)^(n-1)p_r^2)x^2+2(sum_(r=1)^(n-1)p_r p_(r+1))x+sum_(r=2)^n p_r^2 lt=0` then `p_1,p_2,...,p_n` are in G.P. and when `a_1^2+a_2^2+a_3^2+...+a_n^2=0,a_1=a_2=a_3=...=a_n=0` Statement 2 : If `p_2/p_1=p_3/p_2=....=p_n/p_(n-1),` then `p_1,p_2,...,p_n` are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If p+q=1 then show that sum_(r=0)^(n)r^(2)C_(r)p^(r)q^(n-r)=npq+n^(2)p^(2)

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to

If p+q=1, then show that sum_(r=0)^(n)r^(n)C_(r)p^(r)q^(n-r)=npq+n^(2)p^(2)

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to

sum_(r=1)^(n)(sum_(p=0)^(r-1)""^(n)C_(r)""^(r)C_(p)2^(p)) is equal to:

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot