Home
Class 12
MATHS
Using the property of determinants and w...

Using the property of determinants and without expanding, prove that: `|-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2

Using the property of determinants and without expanding,prove that: det[[-a^(2),ab,acba,b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Using the property of determinants and without expanding, prove that: |1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0

Using the property of determinants and without expanding prove that {:|( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) |:} =4a^(2) b^(2) c^(2)

Using the property of determinants and without expanding, prove that: |[a-b,b-c,c-a],[ b-c,c-a ,a-b ],[c-a ,a-b,b-c]|=0

Using the property of determinants and without expanding,prove that: det[[a-b,b-c,c-ab-c,c-a,a-bc-a,a-b,b-c]]=0

Using the property of determinants and without expanding, prove that: |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b, c(a+b)]|=0

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2

Using the property of determinants and without expanding {:|( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) |:} =4a^(2) b^(2) c^(2)

Using the property of determinants and without expanding , prove that: |[a-b,b-c,c-a],[b-c,c-a,a-b],[c-a,a-b,b-c]| = 0