Home
Class 12
MATHS
The value of the lim(x -> 0)((tanx)/x)^(...

The value of the `lim_(x -> 0)((tanx)/x)^(1/(sinx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is 0 (b) -1 (c) 1 (d) 2

The value of Lim_(x rarr 0)((tanx)^(1/x)+(1+sinx)^(x)) where x gt0 is equal to

The value of [lim_(x to 0)((sinx)/(x))^(sinx/(x-sinx))+lim_(x to 1)x^(1/(1-x))] is

Evaluate : lim_(x rarr 0)(tanx/x)^(1/x)

lim_(x to 0)(tanx)/x is :