Home
Class 12
MATHS
Find the constants 'a' (a > 0) and 'b' ...

Find the constants `'a' (a > 0) and 'b'` such that, `lim_(x->0)(int_0^x(t^2 \ dt)/(sqrt(a+t)))/(b x-sinx)=1` has `0/0` form using L'Hopital Rule.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->0)(int_0^xcost^2dt)/x

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

Evaluate :lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(t)dt)/(x^(3))