Home
Class 7
MATHS
" 20."a(b-c)+b(c-a)+c(a-b)...

" 20."a(b-c)+b(c-a)+c(a-b)

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a) (a-b)(b-c)(c-a) (b) 3(a-b)(b-c)(c-a) (c) -3\ (a-b)(b-c)(c-a) (d) (a+b+c)(a^2+b^2+c^2-a b-b c-c a)

Prove that |b c-a^2c a-b^2a b-c^2-b c+c a+a bb c-c a+a bb c+c a-a b(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)|=3.(b-c)(c-a)(a-b)(a+b+c)(a b+b c+c a)

If a+b+c= 0, then the value of ((a+b)/c + (b+c)/a + (c+a)/b) ((a)/(b+c) + b/(c+a) + c/(a+b)) is :

Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-b)

Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-b)

Prove the identities: |[a, b-c,c-b],[ a-c, b, c-a],[ a-b,b-a, c]| =(a+b-c)(b+c-a)(c+a-b)

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

Prove that: |(a,b-c,c-b),(a-c,b,c-a),(a-b,b-a,c)|=(a+b-c)(b+c-a)(c+a-b)

Without expanding, prove the following |(a,b-c,c-b),(a-c,b,c-a),(a-b,b-a,c)|=(a+b-c)(b+c-a)(c+a-b)