Home
Class 12
MATHS
Let f(x)=3x^2-7x+c , where c is a variab...

Let `f(x)=3x^2-7x+c ,` where `c` is a variable coefficient and `x >7/6` . Then the value of `[c]` such that `f(x)` touches `f^(-1)(x)` is (where [.] represents greatest integer function)_________

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The range of the function f(x)=sin(sin^(-1)[x^(2)-1]) is (where[*] represents greatest integer function)

" The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.