Home
Class 9
MATHS
" 0) "int(0)^( pi/2)sin2x log(tan x)dx...

" 0) "int_(0)^( pi/2)sin2x log(tan x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2)sin2x log(tanx)dx

int_(0)^(pi//2) sin 2 x.ln(tan x)dx

int_(0)^(pi//2) sin 2 x (tan x) dx=

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

int_0^(pi/2) sin 2x. Log (tan x ) dx =

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to a) π b) π/2 c) 0 d) 2π

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

int_(0)^(pi//2) log (tan x ) dx=