Home
Class 11
MATHS
8*(sin(A)/(2)-sqrt(1+sin A))/(cos(A)/(2)...

8*(sin(A)/(2)-sqrt(1+sin A))/(cos(A)/(2)-sqrt(1+sin A))=cot(A)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(A)=(sqrt(1+sin((A)/(2)))+sqrt(1-sin((A)/(2))))/(sqrt(1+sin((A)/(2)))-sqrt(1-sin((A)/(2))))

2 (sin A) / (2) = - sqrt (1 + sin A) -sqrt (1-sin A)

If A=340^(@), prove that 2sin((A)/(2))=-sqrt(1+sin A)+sqrt(1-sin A) and 2cos((A)/(2))=-sqrt(1+sin A)-sqrt(1-sin A)

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

2sin((A)/(2))=-sqrt(1+sin A)+sqrt(1-sin A) if A=340^(@)

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

Prove that cot^(-1)((sqrt(1+sin)+sqrt(1-sin x))/(1sqrt(1+sin)-sqrt(1-sin x)))=(x)/(2);x in(0,(pi)/(4))

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))