Home
Class 11
MATHS
" Prove that: "sin^(2)(n+1)A-sin^(2)nA=s...

" Prove that: "sin^(2)(n+1)A-sin^(2)nA=sin(2n+1)A sin A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)(n+1)A-sin^(2)nA=sin(2n+1)As in A

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

Prove that sin^2(n+1)A-sin^2nA=sin(2n+1)AsinA

Prove that: sin(n+1)A sin(n+2)A+cos(n+1)A cos(n+2)A=cos A

sin(2n+1)A*sin A=sin^(2)(n+1)A-sin^(2)(nA)

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

Prove that: sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x

If alpha=(pi)/(8 n) then prove that sin^(2) alpha+ sin^(2)3 alpha+ sin ^(2) 5 alpha+.. to 2n terms =n.

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Prove that: s in x+s in3x++sin(2n-1)x=(sin^(2)nx)/(s in x) for all n in N.