Home
Class 12
MATHS
([0,1,2],[-1,0,-3],[-2,3,0])...

([0,1,2],[-1,0,-3],[-2,3,0])

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the rank of matrix.A= [[3,1,2,0],[1,0,-1,0],[2,1,3,0]]

[[0,(-1)/(2),2],[(1)/(2),0,0],[-2,0,0]|quad 2) [[0,(1)/(2),1],[(-1)/(2),0,0],[-1,0,0]|quad 3([0,1,0],[-1,0,1],[0,-1,0])quad ([0,2,3],[-2,0,4],[-3,-4,0])

For what value of x , the matrix A = [(0,1,-2),(-1,0,x^3),(2,-3,0)] is skew symmetric

If A= [[0,-2,3],[2,0,-1],[-3,1,0]] then A^5 is

For what value of x, the matrix A=[(0,1,-2),(-1,0,x^(3)),(2,-3,0)] is skew- symmetric .

Show that [[1,2,3],[0,1,0],[1,1,0]] [[-1,1,0],[0,-1,1],[2,3,4]] ne [[-1,1,0],[0,-1,1],[2,3,4]][[1,2,3],[0,1,0],[1,1,0]]

Show that: [[1,2,3],[0,1,0],[1,1,0]][[-1,1,0],[0,-1,1],[2,3,4]] ne [[-1,1,0],[0,-1,1],[2,3,4]][[1,2,3],[0,1,0],[1,1,0]]

If A=[(1,0,2),(0,1,2),(1,2,0)],B=[(1,-2,3),(2,3,-1),(-3,1,2)] then

" Let "A" be a "3times3" matrix such that "A[[1,2,3],[0,2,3],[0,1,1]]=[[0,0,1],[1,0,0],[0,1,0]]" .Then "A^(-1)" is "