Home
Class 14
MATHS
" (ii) "4x^(2)-4x+1...

" (ii) "4x^(2)-4x+1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sinfrac {pi}{14} is a root of the equation 8x^(3) -4x^(2) - 4x +1 = 0 .

The value of the discriminant of the solution 4x^(2) -4x + 1 =0 is

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) 4x ^(2) + 4x +1

Let RR be the set of real numbers and f: RR rarr RR ,g: RR rarr RR be two functions such that, (g o f) (x) = 4x^(2)+4x+1 and (f o g ) (x) = 2x^(2)+1 . Find f(x) and g(x) .

Let a=(pi)/(7) , then (a) show that sin^(2)3a-sin^(2)a=sin2asin3a (b) show that co sec a=co sec 2a+co sec4a . (c) Prove that cos a is a root of the equation 8x^(3)+4x^(2)-4x+1=0 .

Let a=(pi)/(7) , then (a) show that sin^(2)3a-sin^(2)a=sin2asin3a (b) show that co sec a=co sec 2a+co sec4a . (c) Prove that cos a is a root of the equation 8x^(3)+4x^(2)-4x+1=0 .

Prove that the roots of the equation 8x^(3)-4x^(2)-4x+1=0 " are " cos""pi/7, cos""(3pi)/7 " and " cos""(5pi)/7 . Evaluate sec""pi/7+sec""(3pi)/7+sec""(5pi)/7

The roots of the equation 8x^(3)-4x^(2)-4x+1=0 " are " cos""pi/7, cos""(3pi)/7 " and " cos""(5pi)/7 . Evaluate sec""pi/7+sec""(3pi)/7+sec""(5pi)/7

let cos((pi)/(7)),cos((3 pi)/(7)),cos((5 pi)/(7)), the roots of equation 8x^(3)-4x^(2)-4x+1=0 then the value of sin((pi)/(14)),sin((3 pi)/(14)),sin((5 pi)/(14))

Let cos(pi)/(7),cos(3 pi)/(7),cos(5 pi)/(7) are the roots of equation 8x^(3)-4x^(2)-4x+1=0 Q.The value of sec((pi)/(7))+sec((3 pi)/(7))+sec((5 pi)/(7)) is