Home
Class 12
MATHS
" If "f(1)=3" and "f'(1)=6," then "lim(x...

" If "f(1)=3" and "f'(1)=6," then "lim_(x rarr0)((f(1+x))/(f(1)))^(1/x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

A function f:R rarr R is such that f(1)=3 and f'(1)=6. Then lim_(x rarr0)[(f(1+x))/(f(1))]^(1/x)=

Let f:R rarr R be such that f(1)=3andf'(1)=6. Then lim_(x rarr0)((f(1+x))/(f(1)))^(1/x)=(a)1( b) e^((1)/(2))(c)e^(2) (d) e^(3)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

-If f(x) is a quadratic expression such that f(-2)=f(2)=0 and f(1)=6 then lim_(x rarr0)(sqrt(f(x))-2sqrt(2))/(ln(cos x)) is equal to

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)