Home
Class 12
MATHS
" Show that "C(0)-4*C(1)+7*C(2)-10*C(3)+...

" Show that "C_(0)-4*C_(1)+7*C_(2)-10*C_(3)+...=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)+x+C_(2)x^(2)+...+C_(n)x^(n) show that, C_(0)-2^(2)*C_(1)+3^(2)*C_(2)-...+(-1)^(n)*(n+1)^(2)*C_(n)=0 (n gt 2)

Show that C_(0) + C_(1) + C_(2) + …. + C_(10) = 1024

Prove that following C_(0)-4.C_(1)+7.C_(2)-10.C_(3)+……=0, if n is an even positive integer.

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)+4C_(1)+8C_(2)+12C_(3)+......+4nC_(n)=1+n.2^(n+1)

Show that: C_(0) + C_(2) + C_(4) +…… + C_(12) = C_(1) + C_(2) + C_(3) + C_(5) + ……. + C_(11) = 2048

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .