Home
Class 10
MATHS
" Prove that ":cos A cos2A cos4A cos8A=(...

" Prove that ":cos A cos2A cos4A cos8A=(sin16 alpha)/(16sin A)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos A cos 2A cos 4A cos 8A= (sin 16A)/(16 sin A) .

If A is not an integral multiple of (pi) , prove that cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A) Hence deduce that cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)

prove that cos x cos2x cos4x cos8x=(sin16x)/(16sin x)

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that: (cos8A cos5A-cos12A cos9A)/(sin8A cos5A+cos12A sin9A)=tan4A

if cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then prove that cos2 alpha+cos2 beta+cos2 gamma=sin2 alpha+sin2 beta+sin2 gamma=0

Prove that : (sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(sin^(2)-cos^(2)A)

cos A * cos2A * cos4A * cos8A * cos16A * cos32A = (sin (64A)) / (64sin A)

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0