Home
Class 11
MATHS
If cosx=-1/3, pi < x < (3pi)/2 then find...

If `cosx=-1/3, pi < x < (3pi)/2` then find the values of `sin(x/2)` and `tan(x/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2) , tan (x/2)

Lim_(x to pi/3) sin(pi/3-x)/(2 cosx-1) is equal to

The number of solutions of cosx=|1+sinx|,0lexle3pi is

The number of solution of cosx=|1+sinx|,0lexle3pi is

The most general solution of the equation tan^-1(1/2secx)+cot^-1(2cosx)=pi/3 is

Find the number of solution of [cosx]+|sinx=1inpilt=xlt=3pi where [ ] denotes the greatest integer function.

Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))), pi lt x lt (3pi)/2 is :

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi ltx lt pi with respect to x :

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))}, -pi

Simplify cos^-1(3/5cosx + 4/5 sin x), x in (-(2pi)/(3) , (pi)/(4))