Home
Class 10
MATHS
If cosA=7/25, find the value of tanA+cot...

If `cosA=7/25`, find the value of `tanA+cotA`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos A = \frac{7}{25} \) and we need to find the value of \( \tan A + \cot A \), we can follow these steps: ### Step 1: Understand the relationship of cosine in a right triangle Given \( \cos A = \frac{7}{25} \), we can interpret this in the context of a right triangle. Here, the cosine of angle \( A \) is defined as the ratio of the adjacent side (base) to the hypotenuse. ### Step 2: Identify the sides of the triangle From \( \cos A = \frac{7}{25} \): - Let the adjacent side (base) = 7 - Let the hypotenuse = 25 ### Step 3: Use the Pythagorean theorem to find the opposite side (perpendicular) Using the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{base}^2 + \text{perpendicular}^2 \] Substituting the known values: \[ 25^2 = 7^2 + \text{perpendicular}^2 \] \[ 625 = 49 + \text{perpendicular}^2 \] \[ \text{perpendicular}^2 = 625 - 49 = 576 \] \[ \text{perpendicular} = \sqrt{576} = 24 \] ### Step 4: Calculate \( \tan A \) and \( \cot A \) Now we can find \( \tan A \) and \( \cot A \): - \( \tan A = \frac{\text{perpendicular}}{\text{base}} = \frac{24}{7} \) - \( \cot A = \frac{\text{base}}{\text{perpendicular}} = \frac{7}{24} \) ### Step 5: Find \( \tan A + \cot A \) Now, we can add \( \tan A \) and \( \cot A \): \[ \tan A + \cot A = \frac{24}{7} + \frac{7}{24} \] ### Step 6: Find a common denominator and simplify The common denominator for \( 7 \) and \( 24 \) is \( 168 \): \[ \tan A + \cot A = \frac{24 \times 24}{168} + \frac{7 \times 7}{168} = \frac{576 + 49}{168} = \frac{625}{168} \] ### Final Answer Thus, the value of \( \tan A + \cot A \) is: \[ \frac{625}{168} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of (tanA+secA-1)cosA .

If sec A= 2, then find the value of (1)/(cotA)+(cosA)/(1+sinA)

If tanA=3/4, find the value of 1/sinA+1/cosA OR If sqrt(3)sintheta- costheta=0 and 0^(@)ltthetalt90^(@) ,find the value of theta

If cotA=(7)/(24) , then the value of sin A is :

If tanA=1 ,then find the value of sin^(2)A+cos^(2)A+cotA .

If sinA=(sqrt(3))/(2) and A is an acute angle, then find the value of (tanA-cotA)/(sqrt(3)+"cosec"A) .

If tanA-tan B=x , and cot B-cotA=y , then find the value of cot(A-B) .

DeltaABC is right angled at B . If cotA =(8)/(15) ,what is the value of cosA ?

If A is in the fourth quadrant and cosA=(5)/(13) , find the value of (13sinA+5secA)/(5tanA+6" cosec A") :

If "cosec"A=-sqrt(2) and (3pi)/(2) lt A lt 2pi , find the value of (tanA+"cosec"A+1)/(cotA-"cosecA"+1) .