Home
Class 10
MATHS
If tantheta=4/3 then find the value of (...

If `tantheta=4/3` then find the value of `(sintheta+costheta)/(sintheta-costheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\sin \theta + \cos \theta) / (\sin \theta - \cos \theta)\) given that \(\tan \theta = \frac{4}{3}\). **Step 1: Understand the relationship between sine, cosine, and tangent.** Given that \(\tan \theta = \frac{4}{3}\), we can interpret this as the ratio of the opposite side (perpendicular) to the adjacent side (base) in a right-angled triangle. **Hint:** Recall that \(\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}\). **Step 2: Assign values to the sides of the triangle.** Let the opposite side (perpendicular) be 4 and the adjacent side (base) be 3. **Hint:** Use the values given in the tangent ratio to define the sides of the triangle. **Step 3: Calculate the hypotenuse using the Pythagorean theorem.** Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{(\text{Opposite})^2 + (\text{Adjacent})^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5. \] **Hint:** Remember the Pythagorean theorem: \(c^2 = a^2 + b^2\). **Step 4: Find the values of sine and cosine.** Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{5}, \] \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{3}{5}. \] **Hint:** Use the definitions of sine and cosine based on the triangle sides. **Step 5: Substitute the values into the expression.** Now we substitute \(\sin \theta\) and \(\cos \theta\) into the expression \((\sin \theta + \cos \theta) / (\sin \theta - \cos \theta)\): \[ \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = \frac{\frac{4}{5} + \frac{3}{5}}{\frac{4}{5} - \frac{3}{5}}. \] **Hint:** Combine the fractions carefully. **Step 6: Simplify the expression.** The numerator becomes: \[ \frac{4}{5} + \frac{3}{5} = \frac{4 + 3}{5} = \frac{7}{5}. \] The denominator becomes: \[ \frac{4}{5} - \frac{3}{5} = \frac{4 - 3}{5} = \frac{1}{5}. \] Thus, we have: \[ \frac{\frac{7}{5}}{\frac{1}{5}}. \] **Hint:** When dividing fractions, multiply by the reciprocal. **Step 7: Final calculation.** This simplifies to: \[ \frac{7}{5} \times \frac{5}{1} = 7. \] **Final Answer:** The value of \(\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta}\) is \(7\).
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

If 5tantheta=4 then find the value of (5Sintheta-3Costheta)/(5Sintheta+2Costheta)

If tantheta=(4)/(3) , then find the value of (3sintheta-2costheta)/(3sintheta+5costheta)

(i) If tantheta=(a)/(b) ,then find the value of (2sintheta-3costheta)/(2sintheta+3costheta)

If tantheta =p/q , then the value of (p sintheta-q costheta)/(p sintheta+q costheta) is

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

If, 5cot theta =3 ,Find the value of (6sintheta-3costheta)/(7sintheta+3costheta)

If tantheta=(a)/(b) ,then find the value of (costheta+sintheta)/(costheta-sintheta) .

If tantheta-cottheta=0 , find the value of sintheta+costheta .

If sintheta=3/4 then find the value of costheta