Home
Class 10
MATHS
If x=asinthetaandy=acostheta then find t...

If `x=asinthetaandy=acostheta` then find the value of `x^(2)+y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 \) given that \( x = a \sin \theta \) and \( y = a \cos \theta \). ### Step-by-Step Solution: 1. **Write down the expressions for \( x \) and \( y \)**: \[ x = a \sin \theta \] \[ y = a \cos \theta \] 2. **Square both \( x \) and \( y \)**: \[ x^2 = (a \sin \theta)^2 = a^2 \sin^2 \theta \] \[ y^2 = (a \cos \theta)^2 = a^2 \cos^2 \theta \] 3. **Add \( x^2 \) and \( y^2 \)**: \[ x^2 + y^2 = a^2 \sin^2 \theta + a^2 \cos^2 \theta \] 4. **Factor out \( a^2 \)**: \[ x^2 + y^2 = a^2 (\sin^2 \theta + \cos^2 \theta) \] 5. **Use the Pythagorean identity**: We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Therefore: \[ x^2 + y^2 = a^2 \cdot 1 \] 6. **Final result**: \[ x^2 + y^2 = a^2 \] ### Final Answer: The value of \( x^2 + y^2 \) is \( a^2 \).
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

If x=asinthetaandy=btantheta , then the value of (a^(2))/(x^(2))-(b^(2))/(y^(2))=?

Find the value of (x-y)^(2)+(x+y)^(2) .

find the value of (x+y)^2+(x-y)^2

If x=2+sqrt(2) and y=2-sqrt(2) , then find the value of (x^(2)+y^(2)) .

if 2x+y=1 then find the maximum value of x^(2)y

3x+y=19 and x+3y=1 then find the value of 2x+2y

If x=acostheta+bsinthetaandy=bcostheta-asintheta ,then x^(2)+y^(2) is equal to

If x=acostheta , y=bsintheta then eliminate theta .

If x=acostheta-bsinthetaandy=asintheta+bcostheta , then show that : x^(2)+y^(2)=a^(2)+b^(2)