Home
Class 10
MATHS
Find the value of "cosec"70^(@)-sec20^(@...

Find the value of `"cosec"70^(@)-sec20^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \csc 70^\circ - \sec 20^\circ \), we can use the properties of complementary angles in trigonometry. ### Step-by-Step Solution: 1. **Understanding the Definitions**: - The cosecant function is defined as \( \csc \theta = \frac{1}{\sin \theta} \). - The secant function is defined as \( \sec \theta = \frac{1}{\cos \theta} \). 2. **Using Complementary Angles**: - We know that \( \sin(90^\circ - \theta) = \cos \theta \). - Therefore, \( \csc(90^\circ - \theta) = \sec \theta \). 3. **Applying the Complementary Angle Property**: - For \( \csc 70^\circ \), we can express it in terms of \( \sec \): \[ \csc 70^\circ = \sec(90^\circ - 70^\circ) = \sec 20^\circ \] - This means \( \csc 70^\circ \) is equal to \( \sec 20^\circ \). 4. **Substituting Back into the Expression**: - Now, we substitute \( \csc 70^\circ \) in the original expression: \[ \csc 70^\circ - \sec 20^\circ = \sec 20^\circ - \sec 20^\circ \] 5. **Calculating the Final Value**: - Thus, we have: \[ \sec 20^\circ - \sec 20^\circ = 0 \] ### Final Answer: The value of \( \csc 70^\circ - \sec 20^\circ \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

find the value of sqrt3cosec20^(@)-sec20^(@)

Given tantheta=1/sqrt3 , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Find the value of cosec 10^(@) - sqrt(3) sec 10^(@) .

tanalpha=2 , then the value of ("cosec"^(2)alpha-sec^(2)alpha)/("cosec"^(2)alpha+sec^(2)alpha) is

Find the value of cosec^(2)30^(@)sin^(2)45^(@)-sec^(2)60^(@)

Find the exact value of cosec"10"^(@)+"cosec"50^(@)-"cosec"70^(@)

Find the value of sin 48^(@) sec 42^(@)+cos48^(@) "cosec"42^(@).

Evaluate : "cosec" 31^(@) - sec 59^(@)