Home
Class 10
MATHS
Find the value of costhetacos(90^(@)-the...

Find the value of `costhetacos(90^(@)-theta)-sinthetasin(90^(@)-theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \cos \theta \cos(90^\circ - \theta) - \sin \theta \sin(90^\circ - \theta) \] ### Step 1: Use the complementary angle identities Recall the complementary angle identities: - \(\cos(90^\circ - \theta) = \sin \theta\) - \(\sin(90^\circ - \theta) = \cos \theta\) ### Step 2: Substitute the identities into the expression Now, we can substitute these identities into our expression: \[ \cos \theta \cdot \sin \theta - \sin \theta \cdot \cos \theta \] ### Step 3: Simplify the expression Now, we can simplify the expression: \[ \cos \theta \cdot \sin \theta - \sin \theta \cdot \cos \theta = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

Evaluate sinthetacos(90^(@)-theta)+costhetasin(90^(@)-theta) .

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

Find value of cos(90+theta)

Find the value of sin theta xxcos (90-theta) +cos thetaxx sin (90-theta) .

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

The value of cos(270^(@)+theta)cos(90^(@)+theta)-sin(270^(@)-theta)cos theta is

Find the value of (sin theta)/(cos (90^@+theta))+(sin theta)/(sin (180^@+theta))+(tan(90^@+theta))/(cot theta)

The value of cot(180+theta)cot(90-theta) is:

tan theta+tan(90^(@)-theta)=sec theta xx sec(90^(@)-theta)