Home
Class 10
MATHS
Find the value of (1+tan^(2)theta)/(1+co...

Find the value of `(1+tan^(2)theta)/(1+cot^(2)theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta}\), we can follow these steps: ### Step 1: Rewrite cotangent in terms of tangent We know that \(\cot \theta = \frac{1}{\tan \theta}\). Therefore, we can express \(\cot^2 \theta\) as: \[ \cot^2 \theta = \frac{1}{\tan^2 \theta} \] ### Step 2: Substitute cotangent in the expression Now, we can substitute \(\cot^2 \theta\) in the original expression: \[ \frac{1 + \tan^2 \theta}{1 + \cot^2 \theta} = \frac{1 + \tan^2 \theta}{1 + \frac{1}{\tan^2 \theta}} \] ### Step 3: Simplify the denominator To simplify the denominator, we need to find a common denominator: \[ 1 + \frac{1}{\tan^2 \theta} = \frac{\tan^2 \theta + 1}{\tan^2 \theta} \] ### Step 4: Rewrite the entire expression Now we can rewrite the entire expression: \[ \frac{1 + \tan^2 \theta}{1 + \cot^2 \theta} = \frac{1 + \tan^2 \theta}{\frac{\tan^2 \theta + 1}{\tan^2 \theta}} = (1 + \tan^2 \theta) \cdot \frac{\tan^2 \theta}{\tan^2 \theta + 1} \] ### Step 5: Cancel out the common terms Notice that \(1 + \tan^2 \theta\) in the numerator and \(\tan^2 \theta + 1\) in the denominator are the same. Thus, they cancel each other out: \[ = \tan^2 \theta \] ### Final Answer The value of \(\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta}\) is: \[ \tan^2 \theta \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

If tan theta+cot theta=2, find the value of tan^(2)theta+cot^(2)theta

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)

If tan theta=(1)/(sqrt(3)), then find the value of (2tan theta)/(1-tan^(2)theta)

Find the value of (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)

If "tan"theta+"cot"theta=6 , then find the value of "tan"^(2)theta+"cot"^(2)theta .

If tan theta+cot theta=4 , then find the value of tan^(4)theta+cot^(4)theta .

Find the value of (sec^(2)theta-1).cot^(2)theta

If cot theta=(1)/(sqrt(3)), find the value of (1-cos^(2)theta)/(2-sin^(2)theta)

The value of tan^(2)theta+cot^(2)theta is