Home
Class 10
MATHS
Find the value of (sintheta)/(sqrt(1-sin...

Find the value of `(sintheta)/(sqrt(1-sin^(2)theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}\), we can follow these steps: ### Step 1: Recognize the Pythagorean Identity We know from trigonometric identities that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] This implies that: \[ 1 - \sin^2 \theta = \cos^2 \theta \] ### Step 2: Substitute into the Expression Now, we can substitute \(1 - \sin^2 \theta\) in our original expression: \[ \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} = \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \] ### Step 3: Simplify the Square Root The square root of \(\cos^2 \theta\) is \(|\cos \theta|\). However, since we are generally considering angles where \(\cos \theta\) is positive (like in the first quadrant), we can simplify: \[ \sqrt{\cos^2 \theta} = \cos \theta \] ### Step 4: Final Simplification Now, we can simplify the expression: \[ \frac{\sin \theta}{\cos \theta} = \tan \theta \] ### Conclusion Thus, the value of \(\frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}\) is: \[ \tan \theta \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

If cot theta=(1)/(sqrt(3)), find the value of (1-cos^(2)theta)/(2-sin^(2)theta)

Find the value of sqrt((1-sintheta)/(1+sintheta)) .

Find the value of sqrt((1-sintheta)/(1+sintheta))+sqrt((1+sintheta)/(1-sintheta)) .

If sintheta=(3)/(4) ,then find the value of (2cos^(2)theta-3sin^(2)theta) .

If costheta+sintheta=sqrt(2)costheta ,then find the value of (costheta-sintheta)/(sintheta) .

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

If sqrt(5)tantheta= 5sintheta then what is the value of (sin^(2)theta-cos^(2)theta) ?

If sintheta=(12)/(13) , find the value of (sin^(2)theta-cos^(2)theta)/(2sinthetacostheta)-(1)/(tan^(2)theta) .

Find the value of 2(sintheta^(6)+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)