Home
Class 10
MATHS
If thetaand2theta-45^(@) are acute angle...

If `thetaand2theta-45^(@)` are acute angles such that `sintheta=cos(2theta-45^(@))` then `tantheta` is

A

1

B

-1

C

`sqrt3`

D

`1/sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \theta \) given that \( \sin \theta = \cos(2\theta - 45^\circ) \) and both \( \theta \) and \( 2\theta - 45^\circ \) are acute angles. ### Step-by-Step Solution: 1. **Understanding the Relationship**: We know that \( \sin \theta = \cos(2\theta - 45^\circ) \). Since \( \sin \theta \) can be expressed in terms of cosine, we can use the complementary angle identity: \[ \sin \theta = \cos(90^\circ - \theta) \] This means: \[ \cos(2\theta - 45^\circ) = \cos(90^\circ - \theta) \] 2. **Setting the Angles Equal**: Since the cosine function is equal, we can set the angles equal to each other: \[ 2\theta - 45^\circ = 90^\circ - \theta \] 3. **Solving for \( \theta \)**: Rearranging the equation: \[ 2\theta + \theta = 90^\circ + 45^\circ \] \[ 3\theta = 135^\circ \] Dividing both sides by 3: \[ \theta = 45^\circ \] 4. **Finding \( \tan \theta \)**: Now that we have \( \theta = 45^\circ \), we can find \( \tan \theta \): \[ \tan 45^\circ = 1 \] ### Conclusion: Thus, the value of \( \tan \theta \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

If theta and 2 theta-45o are acute angles such that sin theta=cos(2 theta-45o), then tan theta is equal to (a) 1 (b) -1 (c) sqrt(3)(d)(1)/(sqrt(3))

If theta is an acute angle such that 2 sin^(2)theta - 2sqrt2 * sin theta +1 =0,"then" : theta= A) 30^(@) B) 45^(@) C) 60^(@) D) 90^(@)

If the angle theta is acute, then the acute angle between x^(2)(cos theta-sin theta)+2xy cos theta+y^(2)(cos theta+sin theta)=0, is

If theta is an acute angle such that 4sin^(2) theta-2(sqrt3+1)sintheta+sqrt3=0,"then": theta= A) 30^(@) or 60^(@) B) 45^(@) or 90^(@) C) 0^(@) or 180^(@) D)none of these

If sin2 theta=cos3 theta and theta is an acute angle then sin theta is equal to

If theta is an acute angle and sin theta=cos theta, find the value of 2tan^(2)theta+sin^(2)theta-1

If theta is an acute angle such that sec^(2)theta=3 then the value of (tan^(2)theta-cos ec^(2)theta)/(tan^(2)theta+cos ec^(2)theta) is

If cos^2theta-sintheta=1/4 then sintheta=?