Home
Class 10
MATHS
If 3cotA=4, find the value of ("Cosec"^(...

If `3cotA=4`, find the value of `("Cosec"^(2)A+1)/("Cosec"^(2)A-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Step 1: Start with the given equation.** We have: \[ 3 \cot A = 4 \] **Step 2: Solve for cot A.** Dividing both sides by 3, we get: \[ \cot A = \frac{4}{3} \] **Step 3: Square both sides to find cot² A.** Now, squaring both sides: \[ \cot^2 A = \left(\frac{4}{3}\right)^2 = \frac{16}{9} \] **Step 4: Use the trigonometric identity.** We use the identity: \[ \csc^2 A - \cot^2 A = 1 \] This can be rearranged to find \(\csc^2 A\): \[ \csc^2 A = 1 + \cot^2 A \] **Step 5: Substitute cot² A into the identity.** Substituting \(\cot^2 A\) into the equation: \[ \csc^2 A = 1 + \frac{16}{9} \] To add these, convert 1 to a fraction: \[ 1 = \frac{9}{9} \] Thus: \[ \csc^2 A = \frac{9}{9} + \frac{16}{9} = \frac{25}{9} \] **Step 6: Substitute \(\csc^2 A\) into the expression.** Now we need to find: \[ \frac{\csc^2 A + 1}{\csc^2 A - 1} \] Substituting \(\csc^2 A\): \[ \frac{\frac{25}{9} + 1}{\frac{25}{9} - 1} \] Convert 1 to a fraction: \[ 1 = \frac{9}{9} \] So: \[ \frac{\frac{25}{9} + \frac{9}{9}}{\frac{25}{9} - \frac{9}{9}} = \frac{\frac{34}{9}}{\frac{16}{9}} \] **Step 7: Simplify the fraction.** Now, simplifying: \[ \frac{\frac{34}{9}}{\frac{16}{9}} = \frac{34}{16} \] This can be simplified further: \[ \frac{34 \div 2}{16 \div 2} = \frac{17}{8} \] **Final Answer:** Thus, the value of \(\frac{\csc^2 A + 1}{\csc^2 A - 1}\) is: \[ \frac{17}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICS-TEST (SECTION-D)|1 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1-cos^(2)A)*"cosec"^(2)A .

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

If 3cos A = 1, then find the value of cosec A.

The value of "cosec"^(-1)("cosec"(4pi)/3) is

If 15 cotA = 8 , then find the value of cosec A .

Find the value of cot^(2)A - "cosec"^(2)A.

Find the value of (1+cos A)(1-cos A)cosec^(2)A .

If "cosec"A=-sqrt(2) and (3pi)/(2) lt A lt 2pi , find the value of (tanA+"cosec"A+1)/(cotA-"cosecA"+1) .

Find the value of (sqrt(cosec^(2)A-1))/(cot A+tanA) ?