Home
Class 10
MATHS
If tantheta=cot(30^(@)+theta), Find the ...

If `tantheta=cot(30^(@)+theta)`, Find the value of `theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta = \cot(30^\circ + \theta) \), we can follow these steps: ### Step 1: Use the cotangent identity We know that \( \cot x = \frac{1}{\tan x} \). Therefore, we can rewrite the equation as: \[ \tan \theta = \frac{1}{\tan(30^\circ + \theta)} \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ \tan \theta \cdot \tan(30^\circ + \theta) = 1 \] ### Step 3: Use the tangent addition formula Using the tangent addition formula, we have: \[ \tan(30^\circ + \theta) = \frac{\tan 30^\circ + \tan \theta}{1 - \tan 30^\circ \tan \theta} \] Since \( \tan 30^\circ = \frac{1}{\sqrt{3}} \), we can substitute this into the equation: \[ \tan \theta \cdot \left( \frac{\frac{1}{\sqrt{3}} + \tan \theta}{1 - \frac{1}{\sqrt{3}} \tan \theta} \right) = 1 \] ### Step 4: Simplify the equation Multiplying both sides by the denominator: \[ \tan \theta \left( \frac{1}{\sqrt{3}} + \tan \theta \right) = 1 - \frac{1}{\sqrt{3}} \tan \theta \] Expanding gives: \[ \frac{\tan \theta}{\sqrt{3}} + \tan^2 \theta = 1 - \frac{1}{\sqrt{3}} \tan \theta \] ### Step 5: Rearranging the equation Rearranging the equation leads to: \[ \tan^2 \theta + \left( \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \right) \tan \theta - 1 = 0 \] This simplifies to: \[ \tan^2 \theta + \frac{2}{\sqrt{3}} \tan \theta - 1 = 0 \] ### Step 6: Solve the quadratic equation Let \( x = \tan \theta \). The equation becomes: \[ x^2 + \frac{2}{\sqrt{3}} x - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-\frac{2}{\sqrt{3}} \pm \sqrt{\left(\frac{2}{\sqrt{3}}\right)^2 + 4}}{2} \] Calculating the discriminant: \[ \left(\frac{2}{\sqrt{3}}\right)^2 + 4 = \frac{4}{3} + 4 = \frac{4}{3} + \frac{12}{3} = \frac{16}{3} \] Thus: \[ x = \frac{-\frac{2}{\sqrt{3}} \pm \frac{4}{\sqrt{3}}}{2} \] This simplifies to: \[ x = \frac{2}{\sqrt{3}} \text{ or } x = -\frac{3}{\sqrt{3}} = -\sqrt{3} \] ### Step 7: Find the angles Now, we find \( \theta \): 1. For \( \tan \theta = \frac{2}{\sqrt{3}} \), we have \( \theta = 30^\circ \). 2. For \( \tan \theta = -\sqrt{3} \), we have \( \theta = 150^\circ \) or \( \theta = -30^\circ \). ### Conclusion The principal solution is: \[ \theta = 30^\circ \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICS-TEST (SECTION-D)|1 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

If tan theta+cot theta=2, find the value of tan^(2)theta+cot^(2)theta

If the angle theta=-30^(@) , find the value of cos theta .

If cot theta =7/8 Find the value of sin theta

If sqrt(3)sin theta=cos theta, find the value of (sin theta tan theta(1+cot theta))/(sin theta+cos theta)

If cot theta =7/8 .Find the value of cos theta

If tan theta=cot2 theta then the value of theta is

If tantheta+cottheta=2 then find the value of tan^(2)theta+cot^(2)theta .

If theta an acute angle and tan theta+cot theta=2 Find the value of cot^(5)theta+tan^(5)theta