Home
Class 10
MATHS
Find the value of theta, if (costheta)/(...

Find the value of `theta`, if `(costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4,thetale90^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos \theta}{1 - \sin \theta} + \frac{\cos \theta}{1 + \sin \theta} = 4 \] we will follow these steps: ### Step 1: Combine the fractions To combine the two fractions on the left-hand side, we need a common denominator. The common denominator is \((1 - \sin \theta)(1 + \sin \theta)\). \[ \frac{\cos \theta (1 + \sin \theta) + \cos \theta (1 - \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} = 4 \] ### Step 2: Simplify the numerator Now, simplifying the numerator: \[ \cos \theta (1 + \sin \theta) + \cos \theta (1 - \sin \theta) = \cos \theta + \cos \theta \sin \theta + \cos \theta - \cos \theta \sin \theta = 2 \cos \theta \] ### Step 3: Simplify the denominator The denominator can be simplified using the identity \(1 - \sin^2 \theta = \cos^2 \theta\): \[ (1 - \sin \theta)(1 + \sin \theta) = 1 - \sin^2 \theta = \cos^2 \theta \] ### Step 4: Rewrite the equation Now we can rewrite the equation: \[ \frac{2 \cos \theta}{\cos^2 \theta} = 4 \] ### Step 5: Simplify the equation This simplifies to: \[ \frac{2}{\cos \theta} = 4 \] ### Step 6: Solve for \(\cos \theta\) Cross-multiplying gives: \[ 2 = 4 \cos \theta \] Dividing both sides by 4: \[ \cos \theta = \frac{1}{2} \] ### Step 7: Find \(\theta\) The value of \(\theta\) for which \(\cos \theta = \frac{1}{2}\) is: \[ \theta = 60^\circ \] ### Final Answer Thus, the value of \(\theta\) is: \[ \theta = 60^\circ \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICS-TEST (SECTION-D)|1 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate costheta/(1+sintheta)

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

A value of theta satifying 4costheta sintheta - 2sintheta =0 is

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

Prove that (Sintheta)/(1+Costheta)+(1+Costheta)/(Sintheta)=2"Cosec"theta

The value of (sintheta+costheta-1)/(sintheta-costheta+1)xxsqrt((1+sintheta)/(1-sintheta)) is:

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|