Home
Class 10
MATHS
Find the value of sec^(2)10^(@)-cot^(2)8...

Find the value of `sec^(2)10^(@)-cot^(2)80^(@)+(sin15^(@)cos75^(@)+cos15^(@)sin75^(@))/(costhetasin(90^(@)-theta)+sinthetacos(90^(@)-theta))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \sec^2(10^\circ) - \cot^2(80^\circ) + \frac{\sin(15^\circ)\cos(75^\circ) + \cos(15^\circ)\sin(75^\circ)}{\cos(\theta)\sin(90^\circ - \theta) + \sin(\theta)\cos(90^\circ - \theta)} \] we will break it down step by step. ### Step 1: Simplify \(\sec^2(10^\circ) - \cot^2(80^\circ)\) We know that: \[ \sec^2(\theta) = \frac{1}{\cos^2(\theta)} \] and \[ \cot^2(\theta) = \frac{\cos^2(\theta)}{\sin^2(\theta)} \] Thus, we can rewrite \(\sec^2(10^\circ)\) and \(\cot^2(80^\circ)\): \[ \sec^2(10^\circ) = \frac{1}{\cos^2(10^\circ)} \] \[ \cot^2(80^\circ) = \frac{\cos^2(80^\circ)}{\sin^2(80^\circ)} \] Using the identity \(\cot(90^\circ - \theta) = \tan(\theta)\), we have: \[ \cot(80^\circ) = \tan(10^\circ) \implies \cot^2(80^\circ) = \tan^2(10^\circ) = \frac{\sin^2(10^\circ)}{\cos^2(10^\circ)} \] Now we can rewrite the expression: \[ \sec^2(10^\circ) - \cot^2(80^\circ) = \frac{1}{\cos^2(10^\circ)} - \frac{\sin^2(10^\circ)}{\cos^2(10^\circ)} = \frac{1 - \sin^2(10^\circ)}{\cos^2(10^\circ)} \] Using the Pythagorean identity \(1 - \sin^2(\theta) = \cos^2(\theta)\): \[ \sec^2(10^\circ) - \cot^2(80^\circ) = \frac{\cos^2(10^\circ)}{\cos^2(10^\circ)} = 1 \] ### Step 2: Simplify the numerator of the fraction The numerator is: \[ \sin(15^\circ)\cos(75^\circ) + \cos(15^\circ)\sin(75^\circ) \] Using the sine addition formula \(\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)\): \[ \sin(15^\circ + 75^\circ) = \sin(90^\circ) = 1 \] ### Step 3: Simplify the denominator of the fraction The denominator is: \[ \cos(\theta)\sin(90^\circ - \theta) + \sin(\theta)\cos(90^\circ - \theta) \] Using the identity \(\sin(90^\circ - \theta) = \cos(\theta)\): \[ \cos(\theta)\cos(\theta) + \sin(\theta)\sin(\theta) = \cos^2(\theta) + \sin^2(\theta) = 1 \] ### Step 4: Combine all parts Putting it all together: \[ \sec^2(10^\circ) - \cot^2(80^\circ) + \frac{1}{1} = 1 + 1 = 2 \] ### Final Answer The value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICS-TEST (SECTION-A)|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE (I) QUESTIONS|15 Videos
  • CONSTRUCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise (PRACTICE-TEST) SECTION-C|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos

Similar Questions

Explore conceptually related problems

sin15^@cos75^@+cos^(2)15^@=

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

sin75^(@)-sin15^(@)=cos105^(@)+cos15^(@)

Evaluate sinthetacos(90^(@)-theta)+costhetasin(90^(@)-theta) .

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Evaluate: (sec 29^(@))/("cosec" 61^(@)) + 2 cot 8^(@) cot 17^(@) cot 45^(@) cot 73^(@) cot82^(@) - 3(sin^(2) 38^(@) + sin^(2) 52^(@)) + 4[cos theta sin(90^(@) - theta) + sin theta cos (90^(@) - theta)]

((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Find the value of (sec(15)^(@))/(cos ec(75)^(@))+(sin(72)^(@))/(cos(18)^(@))-(tan(30)^(@))/(cot(57)^(@))

CBSE COMPLEMENTARY MATERIAL-INTRODUCTION TO TRIGONOMETRY-SHORT ANSWER TYPE QUESTIONS
  1. (tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA)

    Text Solution

    |

  2. Prove 1/(secx-tanx)-1/(cosx)=1/(cosx)-1/(secx+tanx)

    Text Solution

    |

  3. (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta=se...

    Text Solution

    |

  4. Prove that (sin theta + "cosec" theta)^(2)+(cos theta + sec theta)^(...

    Text Solution

    |

  5. secA(1-sinA)(secA+tanA)=1

    Text Solution

    |

  6. If tantheta+sintheta=m and tantheta-sintheta=n, then prove that: m^(2)...

    Text Solution

    |

  7. If sectheta=x+(1)/(4x),prove that sectheta+tantheta=2xor(1)/(2x)*

    Text Solution

    |

  8. If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

    Text Solution

    |

  9. Without using trigonometric table, the value of cotthetatan(90^(@)-t...

    Text Solution

    |

  10. Prove that : (cot(90^(@)-theta))/(tantheta)+("cosec"(90^(@)-theta)sint...

    Text Solution

    |

  11. Without using trigonometric tables, evaluate each of the following: (...

    Text Solution

    |

  12. If A, B, C are the angles of DeltaABC then prove that "cosec"^(2)((B+C...

    Text Solution

    |

  13. Find the value of sec^(2)10^(@)-cot^(2)80^(@)+(sin15^(@)cos75^(@)+cos1...

    Text Solution

    |

  14. Prove the following identities: (tantheta-cottheta)/(sinthetacostheta...

    Text Solution

    |

  15. If sintheta+costheta=sqrt2costhetathen costheta-sintheta is equal to

    Text Solution

    |

  16. Evaulate : 4-(sin30^(@)+tan45^(@)-"cosec"60^(@))/(sec30^(@)+cos60^(@)+...

    Text Solution

    |

  17. Prove that : 1-(sinAsin(90^(@)-A))/(cot(90^(@)-A))=sin^(2)A

    Text Solution

    |

  18. i) If acostheta+bsintheta=m and asintheta-bcostheta=n, then prove that...

    Text Solution

    |

  19. If acostheta-bsintheta=c, then prove that: asintheta+bcostheta=+-sqr...

    Text Solution

    |

  20. Without using trigonometric tables, evaluate each of the following: (...

    Text Solution

    |