Home
Class 10
MATHS
Find the value of : ((3tan41^@)/(cot49^@...

Find the value of : `((3tan41^@)/(cot49^@))^2-((sin35^@ sec55^@)/(tan10^@ tan20^@ tan60^@ tan70^@ tan80^@))^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{3 \tan 41^\circ}{\cot 49^\circ}\right)^2 - \left(\frac{\sin 35^\circ \sec 55^\circ}{\tan 10^\circ \tan 20^\circ \tan 60^\circ \tan 70^\circ \tan 80^\circ}\right)^2\), we will use trigonometric identities and properties. ### Step-by-Step Solution: 1. **Simplify \(\tan 41^\circ\) and \(\cot 49^\circ\)**: \[ \tan 41^\circ = \cot(90^\circ - 41^\circ) = \cot 49^\circ \] Therefore, we can substitute: \[ \frac{3 \tan 41^\circ}{\cot 49^\circ} = \frac{3 \cot 49^\circ}{\cot 49^\circ} = 3 \] 2. **Square the result**: \[ \left(3\right)^2 = 9 \] 3. **Simplify the second part of the expression**: - We know that \(\sec x = \frac{1}{\cos x}\), so: \[ \sec 55^\circ = \frac{1}{\cos 55^\circ} \] - Also, using \(\tan x = \frac{\sin x}{\cos x}\), we can rewrite: \[ \tan 10^\circ = \frac{\sin 10^\circ}{\cos 10^\circ}, \quad \tan 20^\circ = \frac{\sin 20^\circ}{\cos 20^\circ}, \quad \tan 60^\circ = \sqrt{3}, \quad \tan 70^\circ = \cot 20^\circ, \quad \tan 80^\circ = \cot 10^\circ \] - Therefore: \[ \tan 10^\circ \tan 20^\circ \tan 60^\circ \tan 70^\circ \tan 80^\circ = \tan 10^\circ \tan 20^\circ \cdot \sqrt{3} \cdot \cot 20^\circ \cdot \cot 10^\circ \] - This simplifies to: \[ \sqrt{3} \] 4. **Substituting into the second part**: \[ \frac{\sin 35^\circ \sec 55^\circ}{\tan 10^\circ \tan 20^\circ \tan 60^\circ \tan 70^\circ \tan 80^\circ} = \frac{\sin 35^\circ \cdot \frac{1}{\cos 55^\circ}}{\sqrt{3}} \] 5. **Using the identity \(\sin 35^\circ = \cos 55^\circ\)**: \[ \frac{\sin 35^\circ \cdot \frac{1}{\cos 55^\circ}}{\sqrt{3}} = \frac{\cos 55^\circ \cdot \frac{1}{\cos 55^\circ}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] 6. **Square the result**: \[ \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] 7. **Combine both parts of the expression**: \[ 9 - \frac{1}{3} = \frac{27}{3} - \frac{1}{3} = \frac{26}{3} \] ### Final Answer: \[ \frac{26}{3} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION B|7 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice test|10 Videos
  • PRACTICE PAPER- I (WITH SOLUTIONS) CLASS: X Mathematics (Standard)

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -D|6 Videos

Similar Questions

Explore conceptually related problems

tan20^(@)tan40^(@)tan60^(@)tan80^(@)

tan20^(@)tan40^(@)tan80^(@)

tan20^(@)tan40^(@)tan60^(@)tan80^(@)=?

(tan80^(@)-tan10^(@))/(tan70^(@))

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Find the value of cot54^@/(tan36^@)+tan20^@/(cot70^@)

Solve the following : (2sin22^@)/(cos68^@)-(2cot75^@)/(5 tan15^@)-(8 tan 45^@ tan20^@ tan 40^@ tan 50^@ tan70^@)/5