Home
Class 11
MATHS
Find the domain of the real function f(x...

Find the domain of the real function `f(x)=sqrt(x^2 -4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{x^2 - 4} \), we need to determine the values of \( x \) for which the expression inside the square root is non-negative, since the square root of a negative number is not defined in the real number system. ### Step-by-Step Solution: 1. **Set up the inequality**: We need to find when the expression under the square root is greater than or equal to zero: \[ x^2 - 4 \geq 0 \] 2. **Rearrange the inequality**: This can be rewritten as: \[ x^2 \geq 4 \] 3. **Factor the inequality**: We can factor the left side: \[ (x - 2)(x + 2) \geq 0 \] 4. **Find the critical points**: The critical points occur when the expression equals zero: \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \] 5. **Test intervals**: We will test the intervals determined by the critical points \( -2 \) and \( 2 \): - **Interval 1**: \( (-\infty, -2) \) - **Interval 2**: \( (-2, 2) \) - **Interval 3**: \( (2, \infty) \) - For \( x < -2 \) (e.g., \( x = -3 \)): \[ (-3 - 2)(-3 + 2) = (-5)(-1) = 5 \quad (\text{positive}) \] - For \( -2 < x < 2 \) (e.g., \( x = 0 \)): \[ (0 - 2)(0 + 2) = (-2)(2) = -4 \quad (\text{negative}) \] - For \( x > 2 \) (e.g., \( x = 3 \)): \[ (3 - 2)(3 + 2) = (1)(5) = 5 \quad (\text{positive}) \] 6. **Determine the intervals where the inequality holds**: From our testing: - The expression is non-negative in the intervals \( (-\infty, -2] \) and \( [2, \infty) \). 7. **Write the domain**: Therefore, the domain of the function \( f(x) \) is: \[ \text{Domain} = (-\infty, -2] \cup [2, \infty) \] ### Summary: The domain of the function \( f(x) = \sqrt{x^2 - 4} \) is \( (-\infty, -2] \cup [2, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • REALATION AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS (4 MARKS)|29 Videos
  • REALATION AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS (4 MARKS)|29 Videos
  • PROBABILITY

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|23 Videos
  • SEQUENCES AND SERIES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|19 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the real valued function f(x)=sqrt(x^(2)-1)+(1)/(sqrt(x^(2)-3x+2))

Find the domain of the function f(x)=1/sqrt(x-5)

Find the domain of the function f(x)= sqrt(x^2- x- 6)+ sqrt(6 -x)

Write the domain of the real function f(x)=sqrt(x-[x]) .

Find the domain of the real-valued functions: f(x)=sqrt(4-x)+sqrt(x-5)

Find the domain of the real-valued functions: f(x)=sqrt(3-x)+cos^-(1)((3-2x)/5)

Write the domain of the real function f(x)=1/(sqrt(|x|-x))

Find the domain of the real-valued function: f(x)=(x^(2)-x+1)/(x^(2)-5x+4) .

The domain of the function f(x)=sqrt(x^(2)) is :