Home
Class 11
MATHS
If cosx = (1)/(2)and 0 lt x lt 2pi then ...

If cosx = `(1)/(2)`and `0 lt x lt 2pi` then solutions are

A

`x=(pi)/(3),(4pi)/(3)`

B

`x=(2pi)/(3),(4pi)/(3)`

C

`x=(2pi)/(3),(7pi)/(6)`

D

`x=(2pi)/(3),(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos x = -\frac{1}{2} \) and \( 0 < x < 2\pi \), we can follow these steps: ### Step 1: Identify the angles where cosine is negative The cosine function is negative in the second and third quadrants. We need to find the reference angle where \( \cos \) is \( \frac{1}{2} \). ### Step 2: Find the reference angle The reference angle for \( \cos x = \frac{1}{2} \) is: \[ x = \frac{\pi}{3} \] ### Step 3: Determine the angles in the second and third quadrants 1. In the second quadrant, the angle can be found using: \[ x = \pi - \frac{\pi}{3} = \frac{3\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3} \] 2. In the third quadrant, the angle can be found using: \[ x = \pi + \frac{\pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \frac{4\pi}{3} \] ### Step 4: List the solutions The solutions for \( \cos x = -\frac{1}{2} \) in the interval \( 0 < x < 2\pi \) are: \[ x = \frac{2\pi}{3}, \quad x = \frac{4\pi}{3} \] ### Conclusion Thus, the solutions are \( x = \frac{2\pi}{3} \) and \( x = \frac{4\pi}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS ( Fill in the blanks )|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS|20 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi/2 then

If 0 lt x lt pi/2 then

If 0 lt x lt pi /2 then

If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2) , tan (x/2)

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -SHORT ANSWER TYPE QUESTIONS
  1. If cosx = (1)/(2)and 0 lt x lt 2pi then solutions are

    Text Solution

    |

  2. Find the length of an arc of a circle of radius 5cm subtending a ce...

    Text Solution

    |

  3. If sin A =(3)/(5) and (pi)/(2) lt A lt pi  Find cos A, sin 2A

    Text Solution

    |

  4. What is the sign of cos( x/2) – sin(x/2) when (i) 0lt x lt pi/4 (ii) (...

    Text Solution

    |

  5. सिद्ध कीजिए: cos510^(@) cos 330^(@) + sin 390^(@) cos 120^(@) =-

    Text Solution

    |

  6. Find the maximum and minimum value of 24 sin x +7 cos x

    Text Solution

    |

  7. The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

    Text Solution

    |

  8. Find the angle in radians between the hands of a clock at 7: 20 PM

    Text Solution

    |

  9. If cot alpha=(1)/(2) , sec beta=(-5)/(3) where pi lt alpha lt (3pi)/2 ...

    Text Solution

    |

  10. If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2)...

    Text Solution

    |

  11. If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B

    Text Solution

    |

  12. A horse is tied to a post by a rope. If the horse moves along a circul...

    Text Solution

    |

  13. Find the minimum and maximum value of sin^(4)x+cos^(2) x where x in R

    Text Solution

    |

  14. If sec x cos 5x + 1 =0, 0 lt x lt 2pi, then x =

    Text Solution

    |

  15. Solve : sqrt(3)cosx - sin=1.

    Text Solution

    |

  16. Solve 2 tan^(2)x + sec^(2) x= 2

    Text Solution

    |

  17. sqrt(2)sectheta+tantheta=1

    Text Solution

    |

  18. Solve 3 tan x + cot x = 5 cosec x

    Text Solution

    |

  19. find x if 3tan(x-1 5^(@))=tan(x+1 5^(@))

    Text Solution

    |

  20. Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3

    Text Solution

    |

  21. Solve tan x+secx = sqrt3

    Text Solution

    |