Home
Class 11
MATHS
If (-pi)/(2) le x le (3pi)/(2) then tanx...

 If `(-pi)/(2) le x le (3pi)/(2)` then tanx is an increasing function. Check whether True or False.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement "tan x is an increasing function on the interval \([- \frac{\pi}{2}, \frac{3\pi}{2}]\)" is true or false, we will follow these steps: ### Step 1: Define the function Let \( f(x) = \tan x \). ### Step 2: Find the derivative To check if \( f(x) \) is an increasing function, we need to find the derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx}(\tan x) = \sec^2 x \] ### Step 3: Analyze the derivative The function \( \sec^2 x \) is always positive wherever it is defined. The secant function, \( \sec x \), is defined wherever \( \cos x \neq 0 \). ### Step 4: Determine the points of discontinuity The function \( \tan x \) has vertical asymptotes (and thus is undefined) at: \[ x = -\frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] Within the interval \([- \frac{\pi}{2}, \frac{3\pi}{2}]\), the points where \( \tan x \) is undefined are: - \( x = -\frac{\pi}{2} \) (left endpoint) - \( x = \frac{\pi}{2} \) (discontinuity) - \( x = \frac{3\pi}{2} \) (right endpoint) ### Step 5: Analyze the intervals We will analyze the behavior of \( \tan x \) in the intervals: 1. \([- \frac{\pi}{2}, \frac{\pi}{2})\) 2. \((\frac{\pi}{2}, \frac{3\pi}{2})\) - In the interval \([- \frac{\pi}{2}, \frac{\pi}{2})\), \( \tan x \) is increasing because \( f'(x) = \sec^2 x > 0 \). - In the interval \((\frac{\pi}{2}, \frac{3\pi}{2})\), \( \tan x \) is also increasing because \( f'(x) = \sec^2 x > 0 \). ### Step 6: Conclusion Since \( f'(x) > 0 \) in both intervals where \( \tan x \) is defined, we conclude that \( \tan x \) is indeed an increasing function on the interval \([- \frac{\pi}{2}, \frac{3\pi}{2}]\) (excluding the points where it is undefined). Thus, the statement is **True**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|62 Videos
  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS ( Fill in the blanks )|5 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

If pi le x le (3pi)/(2) then sin pi le sinx le sin(3pi)/(2)

For -(pi)/(2)le x le (pi)/(2) , the number of point of intersection of curves y= cos x and y = sin 3x is

If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are

Let f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):} . Draw the graph of the function and find the following (a) Range of the function (b) Point of inflection (c) Point of local minima

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. Number of points where f (x) is non-derivable :

Make a rough sketch of the graph of the function y =2 sin x, 0 le x le (pi)/(2) and determine the area enclosed between the curve, the x-axis and the line x = (pi)/(2).

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -VERY SHORT ANSWER TYPE QUESTIONS
  1. Write the radian measure of 5^(@) 37' 30"

    Text Solution

    |

  2. Find the degree measures corresponding to the radian measures:(11/16)^...

    Text Solution

    |

  3. Write the value of tan((19pi)/(3))

    Text Solution

    |

  4. What is the value of sin (-1125^(@))

    Text Solution

    |

  5. Write the general solution of sin(x+(pi)/(12))=0

    Text Solution

    |

  6. Write the value of 2sin75^(@) sin15^(@)

    Text Solution

    |

  7. What is the maximum value of 3 – 7 cos5x

    Text Solution

    |

  8. Express each of the following as the product of sines and cosines: s i...

    Text Solution

    |

  9. Express 2cos4xsin2x as an algebraic sum of sines and cosines

    Text Solution

    |

  10. Write the maximum value of cos (cosx) and also write its minimum value

    Text Solution

    |

  11. If the following match each item given under column C1 to its corr...

    Text Solution

    |

  12. Match each item given under column C1 to its correct answer given unde...

    Text Solution

    |

  13. If 0 le x le pi then cos0le cosx le cospi

    Text Solution

    |

  14. If 0 le x le (pi)/(2)then sino le sinx le sin(pi)/(2)

    Text Solution

    |

  15. If pi  le x le (3pi)/(2)then sin pi le sinx le sin(3pi)/(2)

    Text Solution

    |

  16. If (-pi)/(2) le x le (3pi)/(2) then tanx is an increasing function. Ch...

    Text Solution

    |

  17. State true or false: The period of sinx function is 2pi

    Text Solution

    |

  18. State true or false: The period of cosx function is 2pi

    Text Solution

    |

  19. State True or False: The period of tanx function is 2pi

    Text Solution

    |

  20. The range of f (x) = secx is R-[-1, 1]

    Text Solution

    |