Home
Class 11
MATHS
What is the sign of cos( x/2) – sin(x/2)...

What is the sign of `cos( x/2) – sin(x/2)` when (i)` 0lt x lt pi/4` (ii) `(pi)/(2)lt xlt pi`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the sign of the expression \( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \) for the given intervals of \( x \), we will analyze the behavior of the cosine and sine functions in those ranges. ### Step-by-Step Solution: #### Part (i): When \( 0 < x < \frac{\pi}{4} \) 1. **Determine the range of \( \frac{x}{2} \)**: - Since \( x \) is between \( 0 \) and \( \frac{\pi}{4} \), we divide by 2 to find the range for \( \frac{x}{2} \): \[ 0 < \frac{x}{2} < \frac{\pi}{8} \] 2. **Analyze the values of \( \cos\left(\frac{x}{2}\right) \) and \( \sin\left(\frac{x}{2}\right) \)**: - In the interval \( 0 < \frac{x}{2} < \frac{\pi}{8} \), we know: - \( \cos\left(\frac{x}{2}\right) \) is decreasing and positive. - \( \sin\left(\frac{x}{2}\right) \) is increasing and also positive. 3. **Evaluate at \( \frac{x}{2} = \frac{\pi}{8} \)**: - At \( \frac{\pi}{8} \), both functions are equal to \( \sin\left(\frac{\pi}{8}\right) \) and \( \cos\left(\frac{\pi}{8}\right) \) respectively, but since \( \frac{x}{2} < \frac{\pi}{8} \), we have: \[ \cos\left(\frac{x}{2}\right) > \sin\left(\frac{x}{2}\right) \] 4. **Conclusion for Part (i)**: - Therefore, \( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) > 0 \) in this interval. - The sign is **positive**. #### Part (ii): When \( \frac{\pi}{2} < x < \pi \) 1. **Determine the range of \( \frac{x}{2} \)**: - Since \( x \) is between \( \frac{\pi}{2} \) and \( \pi \), we divide by 2: \[ \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2} \] 2. **Analyze the values of \( \cos\left(\frac{x}{2}\right) \) and \( \sin\left(\frac{x}{2}\right) \)**: - In the interval \( \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2} \): - \( \cos\left(\frac{x}{2}\right) \) is decreasing and becomes less than \( \sin\left(\frac{x}{2}\right) \). 3. **Evaluate at \( \frac{x}{2} = \frac{\pi}{4} \)**: - At \( \frac{\pi}{4} \), both functions are equal, but since \( \frac{x}{2} > \frac{\pi}{4} \), we have: \[ \cos\left(\frac{x}{2}\right) < \sin\left(\frac{x}{2}\right) \] 4. **Conclusion for Part (ii)**: - Therefore, \( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) < 0 \) in this interval. - The sign is **negative**. ### Final Answer: - For \( 0 < x < \frac{\pi}{4} \): The sign is **positive**. - For \( \frac{\pi}{2} < x < \pi \): The sign is **negative**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS|20 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi/2 then

If 0 lt x lt pi/2 then

If 0 lt x lt pi /2 then

Find the local maxima and local minima of the functions: (i) f(x) = sin 2x, " when " 0 lt x lt pi (ii) f(x) = (sin 2x -x), " when " - (pi)/(2) le x le (pi)/(2)

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if (A) 0 lt x lt (pi)/(8) (B) (pi)/(4) lt x lt (3pi)/(8) (C) ( 3pi)/(8) lt x lt (5pi)/(8) (D) ( 5pi)/(8) lt x lt(3pi)/(4)

Find the local maxima and local minima of the functions: (i) f(x) = (sin x - cos x), " When " 0 lt x lt (pi)/(2) (ii) f(x) = (2 cos x + x), " when " 0 lt x lt pi

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -SHORT ANSWER TYPE QUESTIONS
  1. Find the length of an arc of a circle of radius 5cm subtending a ce...

    Text Solution

    |

  2. If sin A =(3)/(5) and (pi)/(2) lt A lt pi  Find cos A, sin 2A

    Text Solution

    |

  3. What is the sign of cos( x/2) – sin(x/2) when (i) 0lt x lt pi/4 (ii) (...

    Text Solution

    |

  4. सिद्ध कीजिए: cos510^(@) cos 330^(@) + sin 390^(@) cos 120^(@) =-

    Text Solution

    |

  5. Find the maximum and minimum value of 24 sin x +7 cos x

    Text Solution

    |

  6. The value of sin(pi+theta)sin(pi-theta)cosec^(2)theta is equal to

    Text Solution

    |

  7. Find the angle in radians between the hands of a clock at 7: 20 PM

    Text Solution

    |

  8. If cot alpha=(1)/(2) , sec beta=(-5)/(3) where pi lt alpha lt (3pi)/2 ...

    Text Solution

    |

  9. If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2)...

    Text Solution

    |

  10. If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B

    Text Solution

    |

  11. A horse is tied to a post by a rope. If the horse moves along a circul...

    Text Solution

    |

  12. Find the minimum and maximum value of sin^(4)x+cos^(2) x where x in R

    Text Solution

    |

  13. If sec x cos 5x + 1 =0, 0 lt x lt 2pi, then x =

    Text Solution

    |

  14. Solve : sqrt(3)cosx - sin=1.

    Text Solution

    |

  15. Solve 2 tan^(2)x + sec^(2) x= 2

    Text Solution

    |

  16. sqrt(2)sectheta+tantheta=1

    Text Solution

    |

  17. Solve 3 tan x + cot x = 5 cosec x

    Text Solution

    |

  18. find x if 3tan(x-1 5^(@))=tan(x+1 5^(@))

    Text Solution

    |

  19. Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3

    Text Solution

    |

  20. Solve tan x+secx = sqrt3

    Text Solution

    |