Home
Class 11
MATHS
If cosx =(-1)/(3) and pi lt x lt (3pi)/(...

If `cosx =(-1)/(3) and pi lt x lt (3pi)/(2)` Find the value of `cos (x/2) , tan (x/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \cos\left(\frac{x}{2}\right) \) and \( \tan\left(\frac{x}{2}\right) \) given that \( \cos x = -\frac{1}{3} \) and \( \pi < x < \frac{3\pi}{2} \), we can follow these steps: ### Step 1: Determine the range of \( \frac{x}{2} \) Since \( x \) is in the range \( \pi < x < \frac{3\pi}{2} \), we can divide the entire inequality by 2 to find the range of \( \frac{x}{2} \): \[ \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4} \] This means \( \frac{x}{2} \) is in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \). ### Step 2: Use the double angle formula for cosine We know that: \[ \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] Substituting \( \cos x = -\frac{1}{3} \) into the equation: \[ -\frac{1}{3} = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] ### Step 3: Solve for \( \cos^2\left(\frac{x}{2}\right) \) Rearranging the equation gives: \[ 2 \cos^2\left(\frac{x}{2}\right) = -\frac{1}{3} + 1 \] \[ 2 \cos^2\left(\frac{x}{2}\right) = \frac{2}{3} \] \[ \cos^2\left(\frac{x}{2}\right) = \frac{1}{3} \] ### Step 4: Find \( \cos\left(\frac{x}{2}\right) \) Taking the square root: \[ \cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1}{3}} = \pm \frac{1}{\sqrt{3}} \] Since \( \frac{x}{2} \) is in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \), which is in the second quadrant where cosine is negative, we have: \[ \cos\left(\frac{x}{2}\right) = -\frac{1}{\sqrt{3}} \] ### Step 5: Find \( \tan\left(\frac{x}{2}\right) \) We can use the identity: \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \] We know that: \[ \sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right) = 1 \] Substituting \( \cos^2\left(\frac{x}{2}\right) = \frac{1}{3} \): \[ \sin^2\left(\frac{x}{2}\right) = 1 - \frac{1}{3} = \frac{2}{3} \] Taking the square root: \[ \sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{2}{3}} \] Since \( \frac{x}{2} \) is in the second quadrant where sine is positive: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{2}{3}} \] Now we can find \( \tan\left(\frac{x}{2}\right) \): \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \frac{\sqrt{\frac{2}{3}}}{-\frac{1}{\sqrt{3}}} = -\sqrt{2} \] ### Final Answers Thus, the values are: \[ \cos\left(\frac{x}{2}\right) = -\frac{1}{\sqrt{3}}, \quad \tan\left(\frac{x}{2}\right) = -\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS|20 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

If tan x=(3)/(4) " and " pi lt x lt .(3pi)/(2) find the value of (i) sin.(x)/(2) , (ii) cos .(x)/(2) , (iii) tan .(x)/(2)

If cos x=(-3)/(5) " and " pi lt x lt .(3pi)/(2) find the value of (i) "sin 2x "" ""(ii) cos 2x "" ""(iii) tan 2x "

If tan x=(-5)/(12) " and " (pi)/(2) lt x lt pi find the value of cos 2x

If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

If " sin " x =- (1)/(2) " and " pi lt x lt .(3pi)/(2) find the value of (i) " sin "2x , (ii) " cos " 2x (iii) " tan " 2x

If sec x =- (13)/(12) and (pi)/(2) lt x lt pi , find the value of sin 2x

If tan x=(4)/(3) and pi

If cos x=(-3)/(5) " and " .(pi)/(2) lt x lt pi find the values of (i) " sin .(x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -SHORT ANSWER TYPE QUESTIONS
  1. Find the angle in radians between the hands of a clock at 7: 20 PM

    Text Solution

    |

  2. If cot alpha=(1)/(2) , sec beta=(-5)/(3) where pi lt alpha lt (3pi)/2 ...

    Text Solution

    |

  3. If cosx =(-1)/(3) and pi lt x lt (3pi)/(2) Find the value of cos (x/2)...

    Text Solution

    |

  4. If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B

    Text Solution

    |

  5. A horse is tied to a post by a rope. If the horse moves along a circul...

    Text Solution

    |

  6. Find the minimum and maximum value of sin^(4)x+cos^(2) x where x in R

    Text Solution

    |

  7. If sec x cos 5x + 1 =0, 0 lt x lt 2pi, then x =

    Text Solution

    |

  8. Solve : sqrt(3)cosx - sin=1.

    Text Solution

    |

  9. Solve 2 tan^(2)x + sec^(2) x= 2

    Text Solution

    |

  10. sqrt(2)sectheta+tantheta=1

    Text Solution

    |

  11. Solve 3 tan x + cot x = 5 cosec x

    Text Solution

    |

  12. find x if 3tan(x-1 5^(@))=tan(x+1 5^(@))

    Text Solution

    |

  13. Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3

    Text Solution

    |

  14. Solve tan x+secx = sqrt3

    Text Solution

    |

  15. If secx=sqrt2 and (3pi)/(2)lt x lt 2pi find the value of (1-tanx-cosec...

    Text Solution

    |

  16. Prove that sin10^(@) sin 30^(@) sin 50^(@) sin 70^(@)=1/16

    Text Solution

    |

  17. Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the va...

    Text Solution

    |

  18. Prove that tan 70^(@) = "tan " 20^(@) + 2"tan " 50^(@)

    Text Solution

    |

  19. Prove that tan13x = tan 4x + tan 9x + tan 4x tan 9x tan 13x

    Text Solution

    |

  20. Prove that (tan 5theta + tan 3theta)/(tan 5theta - tan 3theta) = 4 c...

    Text Solution

    |