Home
Class 11
MATHS
Find the minimum and maximum value of si...

Find the minimum and maximum value of `sin^(4)x+cos^(2) x` where `x in R`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum and maximum values of the expression \( \sin^4 x + \cos^2 x \), we can follow these steps: ### Step 1: Rewrite the expression We know that \( \sin^2 x + \cos^2 x = 1 \). Therefore, we can express \( \sin^2 x \) in terms of \( \cos^2 x \): \[ \sin^2 x = 1 - \cos^2 x \] Thus, we can rewrite \( \sin^4 x \) as: \[ \sin^4 x = (\sin^2 x)^2 = (1 - \cos^2 x)^2 \] ### Step 2: Expand the expression Now, substituting this back into our original expression: \[ \sin^4 x + \cos^2 x = (1 - \cos^2 x)^2 + \cos^2 x \] Expanding \( (1 - \cos^2 x)^2 \): \[ = 1 - 2\cos^2 x + \cos^4 x + \cos^2 x \] Combining like terms: \[ = 1 - 2\cos^2 x + \cos^4 x + \cos^2 x = 1 - \cos^2 x + \cos^4 x \] Thus, we have: \[ \sin^4 x + \cos^2 x = 1 - \cos^2 x + \cos^4 x \] ### Step 3: Substitute \( y = \cos^2 x \) Let \( y = \cos^2 x \). Then, the expression becomes: \[ 1 - y + y^2 \] where \( y \) can take values in the interval \( [0, 1] \). ### Step 4: Find the derivative To find the maximum and minimum values, we can differentiate the expression with respect to \( y \): \[ f(y) = y^2 - y + 1 \] Calculating the derivative: \[ f'(y) = 2y - 1 \] Setting the derivative to zero to find critical points: \[ 2y - 1 = 0 \implies y = \frac{1}{2} \] ### Step 5: Evaluate the function at critical points and endpoints Now we evaluate \( f(y) \) at the critical point \( y = \frac{1}{2} \) and at the endpoints \( y = 0 \) and \( y = 1 \): 1. For \( y = 0 \): \[ f(0) = 0^2 - 0 + 1 = 1 \] 2. For \( y = 1 \): \[ f(1) = 1^2 - 1 + 1 = 1 \] 3. For \( y = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{3}{4} \] ### Step 6: Determine minimum and maximum values From our evaluations: - The maximum value is \( 1 \) (at \( y = 0 \) and \( y = 1 \)). - The minimum value is \( \frac{3}{4} \) (at \( y = \frac{1}{2} \)). ### Final Answer Thus, the minimum value of \( \sin^4 x + \cos^2 x \) is \( \frac{3}{4} \) and the maximum value is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS|20 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

Find the minimum and maximum values of sin2x-cos2x

The minimum and maximum values of 1-8sin^(2)x cos^(2)x are

Find the maximum and minimum values of sin^(6)x + cos^(6)x .

Find the maximum and minimum values of sin^(6)x + cos^(6)x .

Find the minimum and maximum values of 3cos x+4sin x

(i) Find the maximum and minimum values of sin^(4)x + cos^(2)x and hence or otherwise find the maximum value of sin^(1000)x + cos^(2008)x . (ii) Find the maximum value of cos (cos x)

Find the maximum and minimum values of sin^(4)x+cos^(2)x and hence or otherwise find the maximum value of sin^(1000)x+cos^(2008)x

Find the maximum and minimum value of 3 sin 2x+4 cos 2x+3 .

Find the maximum and minimum value of sin^(2)x+4cos2x, for x in R

Find the maximum and minimum value of 6sin x cos + 4 cos 2x .

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -SHORT ANSWER TYPE QUESTIONS
  1. If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B

    Text Solution

    |

  2. A horse is tied to a post by a rope. If the horse moves along a circul...

    Text Solution

    |

  3. Find the minimum and maximum value of sin^(4)x+cos^(2) x where x in R

    Text Solution

    |

  4. If sec x cos 5x + 1 =0, 0 lt x lt 2pi, then x =

    Text Solution

    |

  5. Solve : sqrt(3)cosx - sin=1.

    Text Solution

    |

  6. Solve 2 tan^(2)x + sec^(2) x= 2

    Text Solution

    |

  7. sqrt(2)sectheta+tantheta=1

    Text Solution

    |

  8. Solve 3 tan x + cot x = 5 cosec x

    Text Solution

    |

  9. find x if 3tan(x-1 5^(@))=tan(x+1 5^(@))

    Text Solution

    |

  10. Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3

    Text Solution

    |

  11. Solve tan x+secx = sqrt3

    Text Solution

    |

  12. If secx=sqrt2 and (3pi)/(2)lt x lt 2pi find the value of (1-tanx-cosec...

    Text Solution

    |

  13. Prove that sin10^(@) sin 30^(@) sin 50^(@) sin 70^(@)=1/16

    Text Solution

    |

  14. Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the va...

    Text Solution

    |

  15. Prove that tan 70^(@) = "tan " 20^(@) + 2"tan " 50^(@)

    Text Solution

    |

  16. Prove that tan13x = tan 4x + tan 9x + tan 4x tan 9x tan 13x

    Text Solution

    |

  17. Prove that (tan 5theta + tan 3theta)/(tan 5theta - tan 3theta) = 4 c...

    Text Solution

    |

  18. Prove the following Identities (cosx+sinx)/(cosx-sinx)-(cosx-sinx)/...

    Text Solution

    |

  19. Prove the following Identities (cos 4x sin 3x - cos 2xsin x)/(sin 4...

    Text Solution

    |

  20. Prove the following Identities (1+sin theta-costheta)/(1+ sintheta+...

    Text Solution

    |