Home
Class 11
MATHS
Evaluate(i) cos 36^(@) (ii)tan((13pi)/(1...

Evaluate(i) `cos 36^(@)`
(ii)`tan((13pi)/(12))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the given expressions, we will break down the problem into two parts: ### Part (i): Evaluate `cos(36°)` 1. **Use the double angle formula**: We know that: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] For \( \theta = 18° \), we have: \[ \cos(36°) = \cos(2 \times 18°) = 1 - 2\sin^2(18°) \] 2. **Find `sin(18°)`**: To find \( \sin(18°) \), we can use the identity: \[ 5\theta = 90° \] This implies: \[ 5 \times 18° = 90° \] Therefore, we can express \( 90° \) as \( 2\theta + 3\theta \) where \( \theta = 18° \): \[ \sin(2\theta) = \sin(90° - 3\theta) \implies \sin(2\theta) = \cos(3\theta) \] 3. **Use the sine and cosine formulas**: We know: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] and \[ \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta) \] Thus, we have: \[ 2\sin(18°)\cos(18°) = 4\cos^3(18°) - 3\cos(18°) \] 4. **Rearranging the equation**: Let \( x = \cos(18°) \): \[ 2\sqrt{1-x^2} x = 4x^3 - 3x \] Rearranging gives: \[ 4x^3 - 3x - 2x\sqrt{1-x^2} = 0 \] 5. **Solving for `sin(18°)`**: After solving the above equation, we find: \[ \sin(18°) = \frac{-1 + \sqrt{5}}{4} \] 6. **Substituting back into the cosine formula**: Now substituting \( \sin(18°) \) back into the cosine formula: \[ \cos(36°) = 1 - 2\left(\frac{-1 + \sqrt{5}}{4}\right)^2 \] Simplifying gives: \[ \cos(36°) = \frac{1 + \sqrt{5}}{4} \] ### Part (ii): Evaluate `tan(13π/12)` 1. **Rewrite `tan(13π/12)`**: We can express \( 13\pi/12 \) as: \[ 13\pi/12 = \pi + \pi/12 \] Using the identity \( \tan(\pi + \theta) = \tan(\theta) \): \[ \tan(13\pi/12) = \tan(\pi/12) \] 2. **Express `tan(π/12)`**: We can express \( \pi/12 \) as: \[ \pi/12 = \pi/3 - \pi/4 \] Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)} \] Here, \( a = \pi/3 \) and \( b = \pi/4 \): \[ \tan(\pi/3) = \sqrt{3}, \quad \tan(\pi/4) = 1 \] Therefore: \[ \tan(\pi/12) = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \] 3. **Rationalizing the denominator**: Multiply numerator and denominator by \( 1 - \sqrt{3} \): \[ \tan(\pi/12) = \frac{(\sqrt{3} - 1)(1 - \sqrt{3})}{(1 + \sqrt{3})(1 - \sqrt{3})} = \frac{3 - 2\sqrt{3} + 1}{1 - 3} = \frac{4 - 2\sqrt{3}}{-2} = 2 - \sqrt{3} \] ### Final Answers: - (i) \( \cos(36°) = \frac{1 + \sqrt{5}}{4} \) - (ii) \( \tan(13\pi/12) = 2 - \sqrt{3} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS|20 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan (13pi)/(12)

(13,pi-(tan^(-1)5)/(12))

Evaluate: (i) tan {cos^(-1)(-(7)/(25))}_( (ii) )csc{cot^(-1)(-(12)/(5))}cos{tan^(-1)(-(3)/(4))}

The value of sum_(k=1)^(13)tan((k pi)/(12))tan(((k-1)pi)/(12)) is

Evaluate: tan (13pi)/(12)

Evaluate: cos ec{cos^(-1)(-(12)/(13))}

Find the values of the following: tan105^(@) ii.(tan(13 pi))/(12)

Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -SHORT ANSWER TYPE QUESTIONS
  1. Draw the graph of cosx, sin x and tan x in [0, 2pi]

    Text Solution

    |

  2. Draw sin x, sin 2x and sin 3x on same graph and with same scale

    Text Solution

    |

  3. Evaluate(i) cos 36^(@) (ii)tan((13pi)/(12))

    Text Solution

    |

  4. cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

    Text Solution

    |

  5. If tanA=tanB=xa n dcotB-cotA=y , prove that cot(A-B)=1/x+1/y

    Text Solution

    |

  6. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , then show that (tanx)/(tany)=(...

    Text Solution

    |

  7. if coxx=cosalpha.cosbeta then prove that tan((x+alpha)/2)*tan((x-alpha...

    Text Solution

    |

  8. If tan(picostheta)=cot(pisintheta), then cos(theta-(pi)/(4))=pm(1)/(2s...

    Text Solution

    |

  9. If sin(theta+alpha)=aa n dsin(theta+beta)=b , prove that cos2(alpha-be...

    Text Solution

    |

  10. Find the range of 5 sin x – 12 cos x + 7

    Text Solution

    |

  11. If alpha and beta are the solutions of the equation atan theta+ b s...

    Text Solution

    |

  12. If alphaa n dbeta are the solutions of the equation at a ntheta+bs e c...

    Text Solution

    |

  13. 2 sin^(2) beta + 4 cos( alpha+ beta) sin alpha sin beta + cos ( 2 alph...

    Text Solution

    |

  14. If 81^(sin^2 x) + 81^(cos^2 x) = 30, where (pi//2) le x le pi, then x ...

    Text Solution

    |

  15. Find the smallest positive number p for which the equation cos (p sin...

    Text Solution

    |

  16. Find the smallest positive number p for which the equation cos (p sin...

    Text Solution

    |

  17. Solve: 4sinxsin2xsin4x=sin3x

    Text Solution

    |

  18. Solve: costheta cos2theta cos3theta =(1)/(4)

    Text Solution

    |

  19. (1+ "cos "(pi)/(8)) (1+ "cos"(3pi)/(8)) (1+ "cos" (5pi)/(8)) (1+ "cos ...

    Text Solution

    |

  20. prove that 4sinalpha.sin(alpha+pi/3).sin(alpha+(2pi)/3)=sin3alpha

    Text Solution

    |