Home
Class 11
MATHS
(1+ "cos "(pi)/(8)) (1+ "cos"(3pi)/(8)) ...

`(1+ "cos "(pi)/(8)) (1+ "cos"(3pi)/(8)) (1+ "cos" (5pi)/(8)) (1+ "cos " (7pi)/(8))`=

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ (1 + \cos(\frac{\pi}{8}))(1 + \cos(\frac{3\pi}{8}))(1 + \cos(\frac{5\pi}{8}))(1 + \cos(\frac{7\pi}{8})), \] we can follow these steps: ### Step 1: Rewrite the terms We know that \(\cos(\frac{5\pi}{8})\) and \(\cos(\frac{7\pi}{8})\) can be rewritten using the identity \(\cos(\pi - x) = -\cos(x)\). Thus, we have: \[ \cos(\frac{5\pi}{8}) = \cos(\pi - \frac{3\pi}{8}) = -\cos(\frac{3\pi}{8}), \] \[ \cos(\frac{7\pi}{8}) = \cos(\pi - \frac{\pi}{8}) = -\cos(\frac{\pi}{8}). \] ### Step 2: Substitute the rewritten terms Now we can substitute these into the expression: \[ (1 + \cos(\frac{\pi}{8}))(1 + \cos(\frac{3\pi}{8}))(1 - \cos(\frac{3\pi}{8}))(1 - \cos(\frac{\pi}{8})). \] ### Step 3: Group the terms We can group the terms: \[ [(1 + \cos(\frac{\pi}{8}))(1 - \cos(\frac{\pi}{8}))][(1 + \cos(\frac{3\pi}{8}))(1 - \cos(\frac{3\pi}{8})). \] ### Step 4: Apply the difference of squares Using the difference of squares formula \(a^2 - b^2 = (a + b)(a - b)\), we have: \[ (1 - \cos^2(\frac{\pi}{8}))(1 - \cos^2(\frac{3\pi}{8})). \] ### Step 5: Use the Pythagorean identity We know that \(1 - \cos^2(x) = \sin^2(x)\), so we can rewrite the expression as: \[ \sin^2(\frac{\pi}{8}) \sin^2(\frac{3\pi}{8}). \] ### Step 6: Use the sine double angle identity Next, we can use the identity \(\sin(\frac{3\pi}{8}) = \cos(\frac{\pi}{8})\) (since \(\frac{3\pi}{8} + \frac{\pi}{8} = \frac{\pi}{2}\)): \[ \sin^2(\frac{\pi}{8}) \cos^2(\frac{\pi}{8}). \] ### Step 7: Apply the double angle formula Using the identity \(2\sin(x)\cos(x) = \sin(2x)\), we can express this as: \[ \frac{1}{4} \sin^2(\frac{\pi}{4}). \] ### Step 8: Evaluate \(\sin(\frac{\pi}{4})\) Since \(\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\), we have: \[ \sin^2(\frac{\pi}{4}) = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}. \] ### Step 9: Final calculation Thus, we have: \[ \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}. \] ### Final Result Therefore, the value of the expression is: \[ \frac{1}{8}. \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS|20 Videos
  • STRAIGHT LINES

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-D (LONG ANSWER TYPE QUESTIONS )|23 Videos

Similar Questions

Explore conceptually related problems

(1 + cos ((pi) / (8))) (1 + cos (3 (pi) / (8))) (1 + cos (5 (pi) / (8))) (1 + cos (7 (pi) / (8))) =

Prove that: (1+cos(pi)/(8))(1+cos(3 pi)/(8))(1+cos(5 pi)/(8))(1+cos(7 pi)/(8))=(1)/(8)

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

The value of (1+(cos pi)/(8))(1+(cos(3 pi))/(8))(1+(cos(5 pi))/(8))(1+(cos(7 pi))/(8))is(a)1/4(b)3/4(c)1/8(d)3/8

[(1 + cos ((pi) / (8)) + i sin ((pi) / (8))) / (1 + cos ((pi) / (8)) - sin ((pi) / (8 )))] ^ (8) =?

(1 + cos ((pi) / (10))) (1 + cos ((3 pi) / (10))) (1 + cos ((7 pi) / (10))) (1 + cos (( 9 pi) / (10))) = (i) (1) / (8) (ii) (1) / (16) (iii) (1) / (4) (iv) (1) / (6)

CBSE COMPLEMENTARY MATERIAL-TRIGONOMETRIC FUNCTIONS -SHORT ANSWER TYPE QUESTIONS
  1. Draw the graph of cosx, sin x and tan x in [0, 2pi]

    Text Solution

    |

  2. Draw sin x, sin 2x and sin 3x on same graph and with same scale

    Text Solution

    |

  3. Evaluate(i) cos 36^(@) (ii)tan((13pi)/(12))

    Text Solution

    |

  4. cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

    Text Solution

    |

  5. If tanA=tanB=xa n dcotB-cotA=y , prove that cot(A-B)=1/x+1/y

    Text Solution

    |

  6. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , then show that (tanx)/(tany)=(...

    Text Solution

    |

  7. if coxx=cosalpha.cosbeta then prove that tan((x+alpha)/2)*tan((x-alpha...

    Text Solution

    |

  8. If tan(picostheta)=cot(pisintheta), then cos(theta-(pi)/(4))=pm(1)/(2s...

    Text Solution

    |

  9. If sin(theta+alpha)=aa n dsin(theta+beta)=b , prove that cos2(alpha-be...

    Text Solution

    |

  10. Find the range of 5 sin x – 12 cos x + 7

    Text Solution

    |

  11. If alpha and beta are the solutions of the equation atan theta+ b s...

    Text Solution

    |

  12. If alphaa n dbeta are the solutions of the equation at a ntheta+bs e c...

    Text Solution

    |

  13. 2 sin^(2) beta + 4 cos( alpha+ beta) sin alpha sin beta + cos ( 2 alph...

    Text Solution

    |

  14. If 81^(sin^2 x) + 81^(cos^2 x) = 30, where (pi//2) le x le pi, then x ...

    Text Solution

    |

  15. Find the smallest positive number p for which the equation cos (p sin...

    Text Solution

    |

  16. Find the smallest positive number p for which the equation cos (p sin...

    Text Solution

    |

  17. Solve: 4sinxsin2xsin4x=sin3x

    Text Solution

    |

  18. Solve: costheta cos2theta cos3theta =(1)/(4)

    Text Solution

    |

  19. (1+ "cos "(pi)/(8)) (1+ "cos"(3pi)/(8)) (1+ "cos" (5pi)/(8)) (1+ "cos ...

    Text Solution

    |

  20. prove that 4sinalpha.sin(alpha+pi/3).sin(alpha+(2pi)/3)=sin3alpha

    Text Solution

    |