Home
Class 11
MATHS
Find sqrt (7-24i)...

Find `sqrt (7-24i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the complex number \( \sqrt{7 - 24i} \), we can express it in the form \( a + bi \), where \( a \) and \( b \) are real numbers. Let's go through the steps to find \( a \) and \( b \). ### Step-by-Step Solution: 1. **Assume the Form**: Let \( \sqrt{7 - 24i} = a + bi \). 2. **Square Both Sides**: Squaring both sides gives: \[ 7 - 24i = (a + bi)^2 \] Expanding the right-hand side: \[ (a + bi)^2 = a^2 + 2abi + (bi)^2 = a^2 + 2abi - b^2 \] Thus, we have: \[ 7 - 24i = (a^2 - b^2) + (2ab)i \] 3. **Equate Real and Imaginary Parts**: From the equation above, we can equate the real and imaginary parts: - Real part: \( a^2 - b^2 = 7 \) (1) - Imaginary part: \( 2ab = -24 \) (2) 4. **Express \( b \) in Terms of \( a \)**: From equation (2), we can express \( b \): \[ b = \frac{-24}{2a} = \frac{-12}{a} \] 5. **Substitute \( b \) into Equation (1)**: Substitute \( b \) in equation (1): \[ a^2 - \left(\frac{-12}{a}\right)^2 = 7 \] This simplifies to: \[ a^2 - \frac{144}{a^2} = 7 \] Multiplying through by \( a^2 \) to eliminate the fraction: \[ a^4 - 7a^2 - 144 = 0 \] 6. **Let \( x = a^2 \)**: Let \( x = a^2 \), then we have a quadratic equation: \[ x^2 - 7x - 144 = 0 \] 7. **Use the Quadratic Formula**: Applying the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot (-144)}}{2 \cdot 1} \] \[ x = \frac{7 \pm \sqrt{49 + 576}}{2} \] \[ x = \frac{7 \pm \sqrt{625}}{2} \] \[ x = \frac{7 \pm 25}{2} \] 8. **Calculate Values of \( x \)**: This gives us two possible values: \[ x = \frac{32}{2} = 16 \quad \text{and} \quad x = \frac{-18}{2} \text{ (not valid since } x = a^2 \text{ must be non-negative)} \] Thus, \( a^2 = 16 \) implies \( a = 4 \) or \( a = -4 \). 9. **Find \( b \)**: Using \( a = 4 \): \[ b = \frac{-12}{4} = -3 \] Using \( a = -4 \): \[ b = \frac{-12}{-4} = 3 \] 10. **Final Values**: Therefore, the square roots of \( 7 - 24i \) are: \[ 4 - 3i \quad \text{and} \quad -4 + 3i \] ### Conclusion: Thus, the square roots of \( 7 - 24i \) are: \[ \sqrt{7 - 24i} = 4 - 3i \quad \text{and} \quad -4 + 3i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Very Short Answer Type Questions(Fill in the blanks)|5 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Very Short Answer Type Questions(True or False|5 Videos
  • BINOMIAL THEOREM

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS(Section-D)|16 Videos
  • COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise section(D) (Long Answer Type Questions ) (6 Marks)|21 Videos

Similar Questions

Explore conceptually related problems

Taking the value of the square root with positive real part only, the value of sqrt(7+24i)+sqrt(-7-24i) , is

Find the value of each of the following: sqrt(10.24)

Evaluate: sqrt(-7+24i)

Find the values of the integers a and b respectively, for which the solution of the equation xsqrt(24)=xsqrt(3)+sqrt(6) is (a+sqrt(b))/(7) .

Find sqrt(0.6)times sqrt(0.24)

Evaluate sqrt(24-10i) .

Find the reciprocal of : (i) 7+sqrt(7)i (ii) i-5 .

CBSE COMPLEMENTARY MATERIAL-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Short Answer Type Questions
  1. Find sqrt (7-24i)

    Text Solution

    |

  2. Evaluate : sqrt(-16) + 3 sqrt(-25) + sqrt(-36) - sqrt(-625).

    Text Solution

    |

  3. Evaluate: (ii) isqrt-16+isqrt-25+sqrt49-isqrt-49+14

    Text Solution

    |

  4. Evaluate the following: \ (i^(77)+i^(70)+i^8+i^(414))^3

    Text Solution

    |

  5. Evaluate: (iv) ((3+sqrt5i)(3-sqrt5i))/((sqrt3+sqrt2i)-(sqrt3-sqrt2i))

    Text Solution

    |

  6. Find the real values of x\ a n d\ y ,\ if:(x+i y)(2-3i)=4+i

    Text Solution

    |

  7. If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2...

    Text Solution

    |

  8. If z1=sqrt2 (cos 30^(@) +isin60^(@)),z2=sqrt3 (cos 60^(@) +isin30^(@))...

    Text Solution

    |

  9. If |z+4|lt=3 then find the greatest and least values of |z+1|dot

    Text Solution

    |

  10. Find the real value of a for which 3i^3-2a i^2+(1-a)i+5 is real.

    Text Solution

    |

  11. If arg(z-1)=arg(z+3i), then find (x-1):y, where z=x+iy.

    Text Solution

    |

  12. If z= x+iy and the amplitude of (z-2-3i) is (pi)/(4). Find the relatio...

    Text Solution

    |

  13. If x+i y=sqrt((1+i)/(1-i)), prove that x^2+y^2=1.

    Text Solution

    |

  14. The real value of theta for which the expression (1+icostheta)/(1-2ic...

    Text Solution

    |

  15. If |(z-5i)/(z+5i)|=1 show that z is a real number

    Text Solution

    |

  16. If xn =cos ((pi)/(2^(n)))+isin((pi)/(2^(n)))Prove that x1 x2…..xoo=-1

    Text Solution

    |

  17. Find the real value of x and y if ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)...

    Text Solution

    |

  18. If (1+i)(1+2i)(1+3i)(1+n i)=(x+i y) , show tht 2. 5. 10 (1+n^2)=x^2+y^...

    Text Solution

    |

  19. If z=2-3i show that z^2=4z+13=0 and hence find the value of 4z^3-3z^2+...

    Text Solution

    |

  20. If ((1+i)/(1-i))^3-((1-i)/(1+i))^3 =a+ib find a and b

    Text Solution

    |

  21. For complex numbers z1 = 6+3i, z2=3-I find (z1)/(z2)

    Text Solution

    |